mirror of
https://github.com/mudler/LocalAI.git
synced 2024-12-21 05:33:09 +00:00
98 lines
3.4 KiB
Python
98 lines
3.4 KiB
Python
|
#!/usr/bin/env python3
|
||
|
"""
|
||
|
This is an extra gRPC server of LocalAI for Bark TTS
|
||
|
"""
|
||
|
from concurrent import futures
|
||
|
import time
|
||
|
import argparse
|
||
|
import signal
|
||
|
import sys
|
||
|
import os
|
||
|
import backend_pb2
|
||
|
import backend_pb2_grpc
|
||
|
|
||
|
import torch
|
||
|
from TTS.api import TTS
|
||
|
|
||
|
import grpc
|
||
|
|
||
|
|
||
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||
|
|
||
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||
|
COQUI_LANGUAGE = os.environ.get('COQUI_LANGUAGE', 'en')
|
||
|
|
||
|
# Implement the BackendServicer class with the service methods
|
||
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||
|
"""
|
||
|
BackendServicer is the class that implements the gRPC service
|
||
|
"""
|
||
|
def Health(self, request, context):
|
||
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||
|
def LoadModel(self, request, context):
|
||
|
|
||
|
# Get device
|
||
|
device = "cuda" if request.CUDA else "cpu"
|
||
|
|
||
|
if not torch.cuda.is_available() and request.CUDA:
|
||
|
return backend_pb2.Result(success=False, message="CUDA is not available")
|
||
|
|
||
|
# List available 🐸TTS models
|
||
|
print(TTS().list_models())
|
||
|
if os.path.isabs(request.AudioPath):
|
||
|
self.AudioPath = request.AudioPath
|
||
|
elif request.AudioPath and request.ModelFile != "" and not os.path.isabs(request.AudioPath):
|
||
|
# get base path of modelFile
|
||
|
modelFileBase = os.path.dirname(request.ModelFile)
|
||
|
# modify LoraAdapter to be relative to modelFileBase
|
||
|
self.AudioPath = os.path.join(modelFileBase, request.AudioPath)
|
||
|
|
||
|
try:
|
||
|
print("Preparing models, please wait", file=sys.stderr)
|
||
|
self.tts = TTS(request.Model).to(device)
|
||
|
except Exception as err:
|
||
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||
|
# Implement your logic here for the LoadModel service
|
||
|
# Replace this with your desired response
|
||
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||
|
|
||
|
def TTS(self, request, context):
|
||
|
try:
|
||
|
self.tts.tts_to_file(text=request.text, speaker_wav=self.AudioPath, language=COQUI_LANGUAGE, file_path=request.dst)
|
||
|
except Exception as err:
|
||
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||
|
return backend_pb2.Result(success=True)
|
||
|
|
||
|
def serve(address):
|
||
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||
|
server.add_insecure_port(address)
|
||
|
server.start()
|
||
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
||
|
|
||
|
# Define the signal handler function
|
||
|
def signal_handler(sig, frame):
|
||
|
print("Received termination signal. Shutting down...")
|
||
|
server.stop(0)
|
||
|
sys.exit(0)
|
||
|
|
||
|
# Set the signal handlers for SIGINT and SIGTERM
|
||
|
signal.signal(signal.SIGINT, signal_handler)
|
||
|
signal.signal(signal.SIGTERM, signal_handler)
|
||
|
|
||
|
try:
|
||
|
while True:
|
||
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
||
|
except KeyboardInterrupt:
|
||
|
server.stop(0)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||
|
parser.add_argument(
|
||
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||
|
)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
serve(args.addr)
|