<|start_header_id|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}<|end_header_id|>
{{if .FunctionCall -}}
<tool_call>
{{else if eq .RoleName "tool" -}}
<tool_response>
{{end -}}
{{if .Content -}}
{{.Content -}}
</tool_response>
{{else if .FunctionCall -}}
{{toJson .FunctionCall -}}
</tool_call>
{{end -}}
<|eot_id|>
function:|
<|start_header_id|>system<|end_header_id|>
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.
Here are the available tools:
<tools>
{{range .Functions}}
{{toJson .}}
{{end}}
</tools>
Use the following pydantic model json schema for each tool call you will make:{"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"}
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows: