LocalAI/backend/python/rerankers/backend.py

124 lines
4.3 KiB
Python
Raw Permalink Normal View History

#!/usr/bin/env python3
"""
Extra gRPC server for Rerankers models.
"""
from concurrent import futures
import argparse
import signal
import sys
import os
import time
import backend_pb2
import backend_pb2_grpc
import grpc
from rerankers import Reranker
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer for the backend service.
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
"""
def Health(self, request, context):
"""
A gRPC method that returns the health status of the backend service.
Args:
request: A HealthRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Reply object that contains the health status of the backend service.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
"""
A gRPC method that loads a model into memory.
Args:
request: A LoadModelRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Result object that contains the result of the LoadModel operation.
"""
model_name = request.Model
try:
kwargs = {}
if request.Type != "":
kwargs['model_type'] = request.Type
if request.PipelineType != "": # Reuse the PipelineType field for language
kwargs['lang'] = request.PipelineType
self.model_name = model_name
self.model = Reranker(model_name, **kwargs)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Rerank(self, request, context):
documents = []
for idx, doc in enumerate(request.documents):
documents.append(doc)
ranked_results=self.model.rank(query=request.query, docs=documents, doc_ids=list(range(len(request.documents))))
# Prepare results to return
results = [
backend_pb2.DocumentResult(
index=res.doc_id,
text=res.text,
relevance_score=res.score
) for res in ranked_results.results
]
# Calculate the usage and total tokens
# TODO: Implement the usage calculation with reranker
total_tokens = sum(len(doc.split()) for doc in request.documents) + len(request.query.split())
prompt_tokens = len(request.query.split())
usage = backend_pb2.Usage(total_tokens=total_tokens, prompt_tokens=prompt_tokens)
return backend_pb2.RerankResult(usage=usage, results=results)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)