HIRS/HIRS_ProvisionerTPM2/test/Utils_Test.cpp
2018-09-06 09:47:33 -04:00

506 lines
16 KiB
C++

/**
* Copyright (C) 2017-2018, U.S. Government
*/
#include <fstream>
#include <iostream>
#include <string>
#include <sstream>
#include <vector>
#include "gtest/gtest.h"
#include "Utils.h"
using hirs::file_utils::dirExists;
using hirs::file_utils::fileExists;
using hirs::string_utils::binaryToHex;
using hirs::string_utils::longToHex;
using hirs::string_utils::isHexString;
using hirs::string_utils::hexToBytes;
using hirs::string_utils::hexToLong;
using hirs::string_utils::trimNewLines;
using hirs::string_utils::trimWhitespaceFromLeft;
using hirs::string_utils::trimWhitespaceFromRight;
using hirs::string_utils::trimWhitespaceFromBothEnds;
using hirs::tpm2_tools_utils::Tpm2ToolsOutputParser;
using std::ofstream;
using std::string;
using std::stringstream;
namespace {
class UtilsTest : public :: testing::Test {
protected:
UtilsTest() {
// You can do set-up work for each test here.
}
virtual ~UtilsTest() {
// You can do clean-up work that doesn't throw exceptions here.
}
virtual void SetUp() {
// Code here will be called immediately after the constructor (right
// before each test).
}
virtual void TearDown() {
// Code here will be called immediately after each test (right
// before the destructor).
}
// Objects declared here can be used by all tests in the test case for
// Utils.
static const char kFileName[];
};
const char UtilsTest::kFileName[] = "bitsAndBytes";
TEST_F(UtilsTest, DirectoryExists) {
mkdir(kFileName, 0755);
ASSERT_TRUE(dirExists(kFileName));
rmdir(kFileName);
}
TEST_F(UtilsTest, DirectoryDoesNotExist) {
ASSERT_FALSE(dirExists(kFileName));
}
TEST_F(UtilsTest, FileExists) {
ofstream outputFile;
outputFile.open(kFileName);
outputFile.close();
ASSERT_TRUE(fileExists(kFileName));
remove(kFileName);
}
TEST_F(UtilsTest, FileDoesNotExist) {
ASSERT_FALSE(fileExists(kFileName));
}
TEST_F(UtilsTest, FileSize) {
string test = "Hello World";
hirs::file_utils::writeBinaryFile(test, "testfile");
int size = hirs::file_utils::getFileSize("testfile");
ASSERT_EQ(size, 11);
}
TEST_F(UtilsTest, SplitFile) {
string test = "Hello World";
hirs::file_utils::writeBinaryFile(test, "testfile");
hirs::file_utils::splitFile("testfile", "testfilep1", 0, 5);
string s = hirs::file_utils::fileToString("testfilep1");
ASSERT_EQ(s, "Hello");
hirs::file_utils::splitFile("testfile", "testfilep2", 5, 5);
s = hirs::file_utils::fileToString("testfilep2");
ASSERT_EQ(s, " Worl");
hirs::file_utils::splitFile("testfile", "testfilep3", 10, 1);
s = hirs::file_utils::fileToString("testfilep3");
ASSERT_EQ(s, "d");
}
TEST_F(UtilsTest, BinToHex) {
const char* testBin = "j\223\255x\216=\330c\aaj\262@\343i\246?\204T5";
ASSERT_EQ(binaryToHex(testBin),
"6a93ad788e3dd86307616ab240e369a63f845435");
}
TEST_F(UtilsTest, LongToHex) {
const uint32_t testValue = 464367618;
ASSERT_EQ(longToHex(testValue), "0x1badb002");
}
TEST_F(UtilsTest, LongToHexZero) {
const uint32_t testValue = 0;
ASSERT_EQ(longToHex(testValue), "0x0");
}
TEST_F(UtilsTest, LongToHexUnderflow) {
const uint32_t testValue = -1;
ASSERT_EQ(longToHex(testValue), "0xffffffff");
}
TEST_F(UtilsTest, LongToHexOverflow) {
uint32_t testValue = 0xffffffff + 1;
ASSERT_EQ(longToHex(testValue), "0x0");
}
TEST_F(UtilsTest, IsHexStringEmpty) {
string testStr = "";
ASSERT_FALSE(isHexString(testStr));
}
TEST_F(UtilsTest, IsHexStringTrue) {
string testStr = "8BADF00D";
ASSERT_TRUE(isHexString(testStr));
}
TEST_F(UtilsTest, IsHexStringPrefixTrue) {
string testStr = "0x8BADF00D";
ASSERT_TRUE(isHexString(testStr));
}
TEST_F(UtilsTest, IsHexStringFalse) {
string testStr = "G00DF00D";
ASSERT_FALSE(isHexString(testStr));
}
TEST_F(UtilsTest, IsHexStringFalseWithSpaces) {
string testStr = "8BAD F00D";
ASSERT_FALSE(isHexString(testStr));
}
TEST_F(UtilsTest, HexToBytesEmptyString) {
string testStr = "";
ASSERT_TRUE(hexToBytes(testStr).empty());
}
TEST_F(UtilsTest, HexToBytesNotHex) {
string testStr = "A study in mopishness";
ASSERT_TRUE(hexToBytes(testStr).empty());
}
TEST_F(UtilsTest, HexToBytesNotEven) {
string testStr = "8BADF00";
ASSERT_TRUE(hexToBytes(testStr).empty());
}
TEST_F(UtilsTest, HexToBytesSuccess) {
// ASCII bytes for "TWO$"
string testBytes = {84, 87, 79, 36};
// Hex encoding of "TWO$"
string testStr = "54574F24";
ASSERT_EQ(testBytes, hexToBytes(testStr));
}
TEST_F(UtilsTest, HexToLong) {
string testStr = "BADF00D";
ASSERT_EQ(hexToLong(testStr), 195948557);
}
TEST_F(UtilsTest, HexWithPrefixToLong) {
string testStr = "0xBADF00D";
ASSERT_EQ(hexToLong(testStr), 195948557);
}
TEST_F(UtilsTest, HexToLongNotHex) {
string testStr = "G00DF00D";
ASSERT_EQ(hexToLong(testStr), 0);
}
TEST_F(UtilsTest, RemoveNewline) {
string test = "abc\ndef\nghi\n";
ASSERT_EQ(trimNewLines(test),
"abcdefghi");
}
TEST_F(UtilsTest, trimWhitespaceFromLeft) {
ASSERT_EQ(trimWhitespaceFromLeft(" asdf"), "asdf");
ASSERT_EQ(trimWhitespaceFromLeft(" as df"), "as df");
ASSERT_EQ(trimWhitespaceFromLeft("\tas df"), "as df");
ASSERT_EQ(trimWhitespaceFromLeft("\t\ras\rdf"), "as\rdf");
ASSERT_EQ(trimWhitespaceFromLeft("asdf "), "asdf ");
ASSERT_EQ(trimWhitespaceFromLeft("asdf"), "asdf");
ASSERT_EQ(trimWhitespaceFromLeft(" "), "");
ASSERT_EQ(trimWhitespaceFromLeft(""), "");
}
TEST_F(UtilsTest, trimWhitespaceFromRight) {
ASSERT_EQ(trimWhitespaceFromRight("asdf "), "asdf");
ASSERT_EQ(trimWhitespaceFromRight("as df "), "as df");
ASSERT_EQ(trimWhitespaceFromRight("as df\t"), "as df");
ASSERT_EQ(trimWhitespaceFromRight("as\rdf\t\r"), "as\rdf");
ASSERT_EQ(trimWhitespaceFromRight(" asdf"), " asdf");
ASSERT_EQ(trimWhitespaceFromRight("asdf"), "asdf");
ASSERT_EQ(trimWhitespaceFromRight(" "), "");
ASSERT_EQ(trimWhitespaceFromRight(""), "");
}
TEST_F(UtilsTest, trimWhitespaceFromBoth) {
ASSERT_EQ(trimWhitespaceFromBothEnds(" asdf "), "asdf");
ASSERT_EQ(trimWhitespaceFromBothEnds(" as df "), "as df");
ASSERT_EQ(trimWhitespaceFromBothEnds("\tas df\t"), "as df");
ASSERT_EQ(trimWhitespaceFromBothEnds("\t\ras\rdf\t\r"), "as\rdf");
ASSERT_EQ(trimWhitespaceFromBothEnds("asdf"), "asdf");
ASSERT_EQ(trimWhitespaceFromBothEnds(" "), "");
ASSERT_EQ(trimWhitespaceFromBothEnds(""), "");
ASSERT_EQ(trimWhitespaceFromBothEnds("asdf "), "asdf");
ASSERT_EQ(trimWhitespaceFromBothEnds("as df "), "as df");
ASSERT_EQ(trimWhitespaceFromBothEnds("as df\t"), "as df");
ASSERT_EQ(trimWhitespaceFromBothEnds("as\rdf\t\r"), "as\rdf");
ASSERT_EQ(trimWhitespaceFromBothEnds(" asdf"), "asdf");
ASSERT_EQ(trimWhitespaceFromBothEnds(" as df"), "as df");
ASSERT_EQ(trimWhitespaceFromBothEnds("\tas df"), "as df");
ASSERT_EQ(trimWhitespaceFromBothEnds("\t\ras\rdf"), "as\rdf");
}
TEST_F(UtilsTest, ParseNvDataSizeSuccess) {
stringstream nvListOutput;
nvListOutput << "2 NV indexes defined.\n"
<< "\n"
<< " 0. NV Index: 0x1800001\n"
<< " {\n"
<< "\tHash algorithm(nameAlg):11\n"
<< "\tThe Index attributes(attributes):0x62042c04\n"
<< "\tThe size of the data area(dataSize):70\n"
<< " }\n"
<< "\n"
<< " 1. NV Index: 0x1c00002\n"
<< " {\n"
<< "\tHash algorithm(nameAlg):11\n"
<< "\tThe Index attributes(attributes):0x620f1001\n"
<< "\tThe size of the data area(dataSize):991\n"
<< " }\n";
uint16_t addressSize = Tpm2ToolsOutputParser::parseNvDataSize(
"0x1c00002", nvListOutput.str());
ASSERT_EQ(991, addressSize);
}
TEST_F(UtilsTest, ParseNvDataSizeSuccessTpm2ToolsV3) {
stringstream nvListOutput;
nvListOutput << "0x1c00002\n"
<< "\thash algorithm:\n"
<< "\t\tfriendly: sha256\n"
<< "\t\tvalue: 0xB\n"
<< "\tattributes:\n"
<< "\t\tfriendly: ownerwrite|policywrite\n"
<< "\t\tvalue: 0xA000220\n"
<< "\tsize: 991\n\n"
<< "0x1c00003\n"
<< "\thash algorithm:\n"
<< "\t\tfriendly: sha256\n"
<< "\t\tvalue: 0xB\n"
<< "\tattributes:\n"
<< "\t\tfriendly: ownerwrite|policywrite\n"
<< "\t\tvalue: 0xA000220\n"
<< "\tsize: 1722\n\n";
uint16_t addressSize = Tpm2ToolsOutputParser::parseNvDataSize(
"0x1c00002", nvListOutput.str());
ASSERT_EQ(991, addressSize);
}
TEST_F(UtilsTest, ParseNvDataSizeFailure) {
stringstream nvListOutput;
nvListOutput << "0 NV indexes defined.\n";
uint16_t addressSize = Tpm2ToolsOutputParser::parseNvDataSize(
"0x1c00002", nvListOutput.str());
ASSERT_EQ(0, addressSize);
}
TEST_F(UtilsTest, ParseNvReadSuccess) {
stringstream nvReadOutput;
nvReadOutput << "The size of data:10\n"
<< " 30 7f 03 6d 30 7f 03 7e 3c 03";
string nvReadData = Tpm2ToolsOutputParser::parseNvReadOutput(
nvReadOutput.str());
string expectedOutput = {48, 127, 3, 109, 48, 127, 3, 126, 60, 3};
ASSERT_EQ(expectedOutput, nvReadData);
}
TEST_F(UtilsTest, ParseNvReadFailure) {
stringstream nvReadOutput;
nvReadOutput << "Failed to read NVRAM area at index 0x1c00001 "
<< "(29360129).Error:0x28b\n";
string nvReadData = Tpm2ToolsOutputParser::parseNvReadOutput(
nvReadOutput.str());
ASSERT_EQ("", nvReadData);
}
TEST_F(UtilsTest, ParsePersistentObjectExistsSuccess) {
stringstream listPersistentOutput;
listPersistentOutput << "1 persistent objects defined.\n"
<< "\n"
<< " 0. Persistent handle: 0x81010001\n"
<< " {\n"
<< "\tType: 0x1\n"
<< "\tHash algorithm(nameAlg): 0xb\n"
<< "\tAttributes: 0x300b2\n"
<< " }\n";
ASSERT_TRUE(Tpm2ToolsOutputParser::parsePersistentObjectExists(
"0x81010001", listPersistentOutput.str()));
}
TEST_F(UtilsTest, ParsePersistentObjectExistsSuccessTpm2ToolsV3) {
stringstream listPersistentOutput;
listPersistentOutput << "persistent-handle[0]:0x81010001 "
<< "key-alg:rsa hash-alg:sha256 "
<< "object-attr:fixedtpm|fixedparent";
ASSERT_TRUE(Tpm2ToolsOutputParser::parsePersistentObjectExists(
"0x81010001", listPersistentOutput.str()));
}
TEST_F(UtilsTest, ParsePersistentObjectExistsFailure) {
stringstream listPersistentOutput;
listPersistentOutput << "0 persistent objects defined.\n";
ASSERT_FALSE(Tpm2ToolsOutputParser::parsePersistentObjectExists(
"0x81010001", listPersistentOutput.str()));
}
TEST_F(UtilsTest, ParseTpmErrorCodeSuccessAnyCharBetweenErrorAndCode) {
stringstream errorOutput;
errorOutput << "Create Object Failed ! ErrorCode: 0x922";
string expectedOutput = "0x922";
string errorCode = Tpm2ToolsOutputParser::parseTpmErrorCode(
errorOutput.str());
ASSERT_EQ(expectedOutput, errorCode);
}
TEST_F(UtilsTest, ParseTpmErrorCodeSuccessHexChars) {
stringstream errorOutput;
errorOutput << "Failed to read NVRAM area at index 0x1c00003"
<< " (29360131).Error:0x28b";
string expectedOutput = "0x28b";
string errorCode = Tpm2ToolsOutputParser::parseTpmErrorCode(
errorOutput.str());
ASSERT_EQ(expectedOutput, errorCode);
}
TEST_F(UtilsTest, ParseTpmErrorCodeSuccessFirstThreeHex) {
stringstream errorOutput;
errorOutput << "Failed to read NVRAM area at index 0x1c00003"
<< " (29360131).Error:0x28b90210";
string expectedOutput = "0x28b";
string errorCode = Tpm2ToolsOutputParser::parseTpmErrorCode(
errorOutput.str());
ASSERT_EQ(expectedOutput, errorCode);
}
TEST_F(UtilsTest, ParseTpmErrorCodeSuccessMultiline) {
stringstream errorOutput;
errorOutput << "Failed to read NVRAM area at index 0x1c00003"
<< " (29360131).Error:\n\n0x28b";
string expectedOutput = "0x28b";
string errorCode = Tpm2ToolsOutputParser::parseTpmErrorCode(
errorOutput.str());
ASSERT_EQ(expectedOutput, errorCode);
}
TEST_F(UtilsTest, ParseTpmErrorCodeSuccessCapitalHex) {
stringstream errorOutput;
errorOutput << "Failed to read NVRAM area at index 0x1c00003"
<< " (29360131).Error:\n\n0x28B";
string expectedOutput = "0x28B";
string errorCode = Tpm2ToolsOutputParser::parseTpmErrorCode(
errorOutput.str());
ASSERT_EQ(expectedOutput, errorCode);
}
TEST_F(UtilsTest, ParseTpmErrorCodeFailNonHex) {
stringstream errorOutput;
errorOutput << "Failed to read NVRAM area at index 0x1c00003"
<< " (29360131).Error:0x28g";
string expectedOutput = "";
string errorCode = Tpm2ToolsOutputParser::parseTpmErrorCode(
errorOutput.str());
ASSERT_EQ(expectedOutput, errorCode);
}
TEST_F(UtilsTest, ParseTpmErrorCodeFailNonHexFormatted) {
stringstream errorOutput;
errorOutput << "Failed to read NVRAM area at index 0x1c00003"
<< " (29360131).Error:28b";
string expectedOutput = "";
string errorCode = Tpm2ToolsOutputParser::parseTpmErrorCode(
errorOutput.str());
ASSERT_EQ(expectedOutput, errorCode);
}
TEST_F(UtilsTest, ParseTpmErrorCodeFailNotErrorCode) {
stringstream errorOutput;
errorOutput << "Easter Egg to be found at memory address: 0x042";
string expectedOutput = "";
string errorCode = Tpm2ToolsOutputParser::parseTpmErrorCode(
errorOutput.str());
ASSERT_EQ(expectedOutput, errorCode);
}
TEST_F(UtilsTest, ParseTpm2ToolsVersionSuccess) {
stringstream versionOutput;
versionOutput << R"(tool="tpm2_rc_decode" version="3.0.1")"
<< R"(tctis="tabrmd,socket,device,")";
string expectedOutput = "3.0.1";
string version = Tpm2ToolsOutputParser::parseTpm2ToolsVersion(
versionOutput.str());
ASSERT_EQ(expectedOutput, version);
}
TEST_F(UtilsTest, ParseTpm2ToolsVersionSuccessCaseInsensitive) {
stringstream versionOutput;
versionOutput << R"(tool="tpm2_rc_decode" VeRSion="3.0.1")"
<< R"(tctis="tabrmd,socket,device,")";
string expectedOutput = "3.0.1";
string version = Tpm2ToolsOutputParser::parseTpm2ToolsVersion(
versionOutput.str());
ASSERT_EQ(expectedOutput, version);
}
TEST_F(UtilsTest, ParseTpm2ToolsVersionSuccessWhitespace) {
stringstream versionOutput;
versionOutput << "tpm2_rc_decode, version 1.1.0";
string expectedOutput = "1.1.0";
string version = Tpm2ToolsOutputParser::parseTpm2ToolsVersion(
versionOutput.str());
ASSERT_EQ(expectedOutput, version);
}
TEST_F(UtilsTest, ParseTpm2ToolsVersionSuccessMultiNumeralVersion) {
stringstream versionOutput;
versionOutput << "tpm2_rc_decode, version 10.29.970";
string expectedOutput = "10.29.970";
string version = Tpm2ToolsOutputParser::parseTpm2ToolsVersion(
versionOutput.str());
ASSERT_EQ(expectedOutput, version);
}
TEST_F(UtilsTest, ParseTpm2ToolsVersionSuccessAnyCharsBeforeVersion) {
stringstream versionOutput;
versionOutput << "tpm2_rc_decode, version!@#$%^&*()+=-_|1.2.9";
string expectedOutput = "1.2.9";
string version = Tpm2ToolsOutputParser::parseTpm2ToolsVersion(
versionOutput.str());
ASSERT_EQ(expectedOutput, version);
}
TEST_F(UtilsTest, ParseTpm2ToolsVersionFailNonSemanticVersion) {
stringstream versionOutput;
versionOutput << "tpm2_rc_decode, version 1.2";
string expectedOutput = "";
string version = Tpm2ToolsOutputParser::parseTpm2ToolsVersion(
versionOutput.str());
ASSERT_EQ(expectedOutput, version);
}
} // namespace
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}