Add Join node (#144)

* Add Join node

* Bug fix chat histories with undefined content in messages

* Slightly decrease TF width
This commit is contained in:
ianarawjo 2023-10-23 15:12:13 -04:00 committed by GitHub
parent beeffd0ebb
commit b448e300c5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 494 additions and 63 deletions

View File

@ -8,7 +8,7 @@ import ReactFlow, {
} from 'reactflow';
import { Button, Menu, LoadingOverlay, Text, Box, List, Loader, Tooltip } from '@mantine/core';
import { useClipboard } from '@mantine/hooks';
import { IconSettings, IconTextPlus, IconTerminal, IconCsv, IconSettingsAutomation, IconFileSymlink, IconRobot, IconRuler2 } from '@tabler/icons-react';
import { IconSettings, IconTextPlus, IconTerminal, IconCsv, IconSettingsAutomation, IconFileSymlink, IconRobot, IconRuler2, IconArrowMerge } from '@tabler/icons-react';
import RemoveEdge from './RemoveEdge';
import TextFieldsNode from './TextFieldsNode'; // Import a custom node
import PromptNode from './PromptNode';
@ -19,6 +19,7 @@ import ScriptNode from './ScriptNode';
import AlertModal from './AlertModal';
import CsvNode from './CsvNode';
import TabularDataNode from './TabularDataNode';
import JoinNode from './JoinNode';
import CommentNode from './CommentNode';
import GlobalSettingsModal from './GlobalSettingsModal';
import ExampleFlowsModal from './ExampleFlowsModal';
@ -87,6 +88,7 @@ const nodeTypes = {
csv: CsvNode,
table: TabularDataNode,
comment: CommentNode,
join: JoinNode,
};
const edgeTypes = {
@ -197,27 +199,27 @@ const App = () => {
code = "function evaluate(response) {\n return response.text.length;\n}";
addNode({ id: 'evalNode-'+Date.now(), type: 'evaluator', data: { language: progLang, code: code }, position: {x: x-200, y:y-100} });
};
const addVisNode = (event) => {
const addVisNode = () => {
const { x, y } = getViewportCenter();
addNode({ id: 'visNode-'+Date.now(), type: 'vis', data: {}, position: {x: x-200, y:y-100} });
};
const addInspectNode = (event) => {
const addInspectNode = () => {
const { x, y } = getViewportCenter();
addNode({ id: 'inspectNode-'+Date.now(), type: 'inspect', data: {}, position: {x: x-200, y:y-100} });
};
const addScriptNode = (event) => {
const addScriptNode = () => {
const { x, y } = getViewportCenter();
addNode({ id: 'scriptNode-'+Date.now(), type: 'script', data: {}, position: {x: x-200, y:y-100} });
};
const addCsvNode = (event) => {
const addCsvNode = () => {
const { x, y } = getViewportCenter();
addNode({ id: 'csvNode-'+Date.now(), type: 'csv', data: {}, position: {x: x-200, y:y-100} });
};
const addTabularDataNode = (event) => {
const addTabularDataNode = () => {
const { x, y } = getViewportCenter();
addNode({ id: 'table-'+Date.now(), type: 'table', data: {}, position: {x: x-200, y:y-100} });
};
const addCommentNode = (event) => {
const addCommentNode = () => {
const { x, y } = getViewportCenter();
addNode({ id: 'comment-'+Date.now(), type: 'comment', data: {}, position: {x: x-200, y:y-100} });
};
@ -225,6 +227,10 @@ const App = () => {
const { x, y } = getViewportCenter();
addNode({ id: 'llmeval-'+Date.now(), type: 'llmeval', data: {}, position: {x: x-200, y:y-100} });
};
const addJoinNode = () => {
const { x, y } = getViewportCenter();
addNode({ id: 'join-'+Date.now(), type: 'join', data: {}, position: {x: x-200, y:y-100} });
};
const onClickExamples = () => {
if (examplesModal && examplesModal.current)
@ -768,6 +774,11 @@ const App = () => {
<Menu.Item onClick={addInspectNode} icon={'🔍'}> Inspect Node </Menu.Item>
</MenuTooltip>
<Menu.Divider />
<Menu.Label>Processors</Menu.Label>
<MenuTooltip label="Concatenate responses or input data together before passing into later nodes, within or across variables and LLMs.">
<Menu.Item onClick={addJoinNode} icon={<IconArrowMerge size='14pt' />}> Join Node </Menu.Item>
</MenuTooltip>
<Menu.Divider />
<Menu.Label>Misc</Menu.Label>
<MenuTooltip label="Make a comment about your flow.">
<Menu.Item onClick={addCommentNode} icon={'✏️'}> Comment Node </Menu.Item>

392
chainforge/react-server/src/JoinNode.js vendored Normal file
View File

@ -0,0 +1,392 @@
import React, { useState, useEffect, useCallback } from 'react';
import { Handle } from 'reactflow';
import useStore from './store';
import NodeLabel from './NodeLabelComponent';
import fetch_from_backend from './fetch_from_backend';
import { IconArrowMerge, IconList } from '@tabler/icons-react';
import { Divider, NativeSelect, Text, Popover, Tooltip, Center, Modal, Box } from '@mantine/core';
import { useDisclosure } from '@mantine/hooks';
const formattingOptions = [
{value: "\n\n", label:"double newline \\n\\n"},
{value: "\n", label:"newline \\n"},
{value: "-", label:"- dashed list"},
{value: "1.", label:"1. numbered list"},
{value: "[]", label:'["list", "of", "strings"]'}
];
const joinTexts = (texts, formatting) => {
if (formatting === "\n\n" || formatting === "\n")
return texts.join(formatting);
else if (formatting === "-")
return texts.map((t) => ('- ' + t)).join("\n");
else if (formatting === "1.")
return texts.map((t, i) => (`${i+1}. ${t}`)).join("\n");
else if (formatting === '[]')
return JSON.stringify(texts);
console.error(`Could not join: Unknown formatting option: ${formatting}`);
return texts;
};
const getVarsAndMetavars = (input_data) => {
// Find all vars and metavars in the input data (if any):
let varnames = new Set();
let metavars = new Set();
Object.entries(input_data).forEach(([key, obj]) => {
if (key !== '__input') varnames.add(key); // A "var" can also be other properties on input_data
obj.forEach(resp_obj => {
if (typeof resp_obj === "string") return;
Object.keys(resp_obj.fill_history).forEach(v => varnames.add(v));
if (resp_obj.metavars) Object.keys(resp_obj.metavars).forEach(v => metavars.add(v));
});
});
varnames = Array.from(varnames);
metavars = Array.from(metavars);
return {
vars: varnames,
metavars: metavars,
};
};
const countNumLLMs = (resp_objs_or_dict) => {
const resp_objs = Array.isArray(resp_objs_or_dict) ? resp_objs_or_dict : Object.values(resp_objs_or_dict).flat();
return (new Set(resp_objs.filter(r => typeof r !== "string" && r.llm !== undefined).map(r => r.llm?.key || r.llm))).size;
};
const tagMetadataWithLLM = (input_data) => {
let new_data = {};
Object.entries(input_data).forEach(([varname, resp_objs]) => {
new_data[varname] = resp_objs.map(r => {
if (!r || typeof r === 'string' || !r?.llm?.key) return r;
let r_copy = JSON.parse(JSON.stringify(r));
r_copy.metavars["__LLM_key"] = r.llm.key;
return r_copy;
});
});
return new_data;
};
const extractLLMLookup = (input_data) => {
let llm_lookup = {};
Object.entries(input_data).forEach(([varname, resp_objs]) => {
resp_objs.forEach(r => {
if (typeof r === 'string' || !r?.llm?.key || r.llm.key in llm_lookup) return;
llm_lookup[r.llm.key] = r.llm;
});
});
return llm_lookup;
};
const removeLLMTagFromMetadata = (metavars) => {
if (!('__LLM_key' in metavars))
return metavars;
let mcopy = JSON.parse(JSON.stringify(metavars));
delete metavars['__LLM_key'];
return mcopy;
};
const truncStr = (s, maxLen) => {
if (s.length > maxLen) // Cut the name short if it's long
return s.substring(0, maxLen) + '...'
else
return s;
};
const groupResponsesBy = (responses, keyFunc) => {
let responses_by_key = {};
let unspecified_group = [];
responses.forEach(item => {
const key = keyFunc(item);
const d = key !== null ? responses_by_key : unspecified_group;
if (key in d)
d[key].push(item);
else
d[key] = [item];
});
return [responses_by_key, unspecified_group];
};
const DEFAULT_GROUPBY_VAR_ALL = { label: "all text", value: "A" };
const displayJoinedTexts = (textInfos, getColorForLLM) => {
const color_for_llm = (llm) => (getColorForLLM(llm) + '99');
return textInfos.map((info, idx) => {
const vars = info.fill_history;
let var_tags = vars === undefined ? [] : Object.keys(vars).map((varname) => {
const v = truncStr(vars[varname].trim(), 72);
return (<div key={varname} className="response-var-inline">
<span className="response-var-name">{varname}&nbsp;=&nbsp;</span><span className="response-var-value">{v}</span>
</div>);
});
const ps = (<pre className='small-response'>{info.text || info}</pre>);
return (
<div key={"r"+idx} className="response-box" style={{ backgroundColor: (info.llm ? color_for_llm(info.llm?.name) : '#ddd'), width: `100%`}}>
<div className="response-var-inline-container">
{var_tags}
</div>
{info.llm === undefined ?
ps
: (<div className="response-item-llm-name-wrapper">
<h1>{info.llm?.name}</h1>
{ps}
</div>)
}
</div>
);
});
};
const JoinedTextsPopover = ({ textInfos, onHover, onClick, getColorForLLM }) => {
const [opened, { close, open }] = useDisclosure(false);
const _onHover = useCallback(() => {
onHover();
open();
}, [onHover, open]);
return (
<Popover position="right-start" withArrow withinPortal shadow="rgb(38, 57, 77) 0px 10px 30px -14px" key="query-info" opened={opened} styles={{dropdown: {maxHeight: '500px', maxWidth: '400px', overflowY: 'auto', backgroundColor: '#fff'}}}>
<Popover.Target>
<Tooltip label='Click to view all joined inputs' withArrow>
<button className='custom-button' onMouseEnter={_onHover} onMouseLeave={close} onClick={onClick} style={{border:'none'}}>
<IconList size='12pt' color='gray' style={{marginBottom: '-4px'}} />
</button>
</Tooltip>
</Popover.Target>
<Popover.Dropdown sx={{ pointerEvents: 'none' }}>
<Center><Text size='xs' fw={500} color='#666'>Preview of joined inputs ({textInfos?.length} total)</Text></Center>
{displayJoinedTexts(textInfos, getColorForLLM)}
</Popover.Dropdown>
</Popover>
);
};
const JoinNode = ({ data, id }) => {
const [joinedTexts, setJoinedTexts] = useState([]);
// For an info pop-up that previews all the joined inputs
const [infoModalOpened, { open: openInfoModal, close: closeInfoModal }] = useDisclosure(false);
const [pastInputs, setPastInputs] = useState([]);
const pullInputData = useStore((state) => state.pullInputData);
const setDataPropsForNode = useStore((state) => state.setDataPropsForNode);
// Global lookup for what color to use per LLM
const getColorForLLMAndSetIfNotFound = useStore((state) => state.getColorForLLMAndSetIfNotFound);
const [inputHasLLMs, setInputHasLLMs] = useState(false);
const [groupByVars, setGroupByVars] = useState([DEFAULT_GROUPBY_VAR_ALL]);
const [groupByVar, setGroupByVar] = useState("A");
const [groupByLLM, setGroupByLLM] = useState("within");
const [formatting, setFormatting] = useState(formattingOptions[0].value);
const handleOnConnect = useCallback(() => {
let input_data = pullInputData(["__input"], id);
if (!input_data?.__input) {
console.warn('Join Node: No input data detected.');
return;
}
// Find all vars and metavars in the input data (if any):
let {vars, metavars} = getVarsAndMetavars(input_data);
// Create lookup table for LLMs in input, indexed by llm key
const llm_lookup = extractLLMLookup(input_data);
// Refresh the dropdown list with available vars/metavars:
setGroupByVars([DEFAULT_GROUPBY_VAR_ALL].concat(
vars.map(varname => ({label: `by ${varname}`, value: `V${varname}`})))
.concat(
metavars.filter(varname => !varname.startsWith('LLM_')).map(varname => ({label: `by ${varname} (meta)`, value: `M${varname}`})))
);
// Check whether more than one LLM is present in the inputs:
const numLLMs = countNumLLMs(input_data);
setInputHasLLMs(numLLMs > 1);
// Tag all response objects in the input data with a metavar for their LLM (using the llm key as a uid)
input_data = tagMetadataWithLLM(input_data);
// A function to group the input (an array of texts/resp_objs) by the selected var
// and then join the texts within the groups
const joinByVar = (input) => {
const varname = groupByVar.substring(1);
const isMetavar = groupByVar[0] === 'M';
const [groupedResps, unspecGroup] = groupResponsesBy(input,
isMetavar ?
(r) => (r.metavars ? r.metavars[varname] : undefined) :
(r) => (r.fill_history ? r.fill_history[varname] : undefined)
);
// Now join texts within each group:
// (NOTE: We can do this directly here as response texts can't be templates themselves)
let joined_texts = Object.entries(groupedResps).map(([var_val, resp_objs]) => {
if (resp_objs.length === 0) return "";
const llm = (countNumLLMs(resp_objs) > 1) ? undefined : resp_objs[0].llm;
let vars = {};
if (groupByVar !== 'A')
vars[varname] = var_val;
return {
text: joinTexts(resp_objs.map(r => r.text !== undefined ? r.text : r), formatting),
fill_history: isMetavar ? {} : vars,
metavars: isMetavar ? vars : {},
llm: llm,
// NOTE: We lose all other metadata here, because we could've joined across other vars or metavars values.
};
});
// Add any data from unspecified group
if (unspecGroup.length > 0) {
const llm = (countNumLLMs(unspecGroup) > 1) ? undefined : unspecGroup[0].llm;
joined_texts.push({
text: joinTexts(unspecGroup.map(u => u.text !== undefined ? u.text : u), formatting),
fill_history: {},
metavars: {},
llm: llm,
});
}
return joined_texts;
};
// Generate (flatten) the inputs, which could be recursively chained templates
// and a mix of LLM resp objects, templates, and strings.
// (We tagged each object with its LLM key so that we can use built-in features to keep track of the LLM associated with each response object)
fetch_from_backend('generatePrompts', {
prompt: "{__input}",
vars: input_data,
}).then(promptTemplates => {
// Convert the templates into response objects
let resp_objs = promptTemplates.map(p => ({
text: p.toString(),
fill_history: p.fill_history,
llm: "__LLM_key" in p.metavars ? llm_lookup[p.metavars['__LLM_key']] : undefined,
metavars: removeLLMTagFromMetadata(p.metavars),
}));
// If there's multiple LLMs and groupByLLM is 'within', we need to
// first group by the LLMs (and a possible 'undefined' group):
if (numLLMs > 1 && groupByLLM === 'within') {
let joined_texts = [];
const [groupedRespsByLLM, nonLLMRespGroup] = groupResponsesBy(resp_objs, r => r.llm?.key || r.llm);
Object.entries(groupedRespsByLLM).map(([llm_key, resp_objs]) => {
// Group only within the LLM
joined_texts = joined_texts.concat(joinByVar(resp_objs));
});
if (nonLLMRespGroup.length > 0)
joined_texts.push(joinTexts(nonLLMRespGroup, formatting));
setJoinedTexts(joined_texts);
setDataPropsForNode(id, { fields: joined_texts });
} else {
// Join across LLMs (join irrespective of LLM):
if (groupByVar !== 'A') {
// If groupByVar is set to non-ALL (not "A"), then we need to group responses by that variable first:
const joined_texts = joinByVar(resp_objs);
setJoinedTexts(joined_texts);
setDataPropsForNode(id, { fields: joined_texts });
} else {
let joined_texts = joinTexts(resp_objs.map(r => ((typeof r === 'string') ? r : r.text)), formatting);
// If there is exactly 1 LLM and it's present across all inputs, keep track of it:
if (numLLMs === 1 && resp_objs.every((r) => r.llm !== undefined))
joined_texts = {text: joined_texts, fill_history: {}, llm: resp_objs[0].llm};
setJoinedTexts([joined_texts]);
setDataPropsForNode(id, { fields: [joined_texts] });
}
}
});
}, [formatting, pullInputData, groupByVar, groupByLLM]);
if (data.input) {
// If there's a change in inputs...
if (data.input != pastInputs) {
setPastInputs(data.input);
handleOnConnect();
}
}
// Refresh join output anytime the dropdowns change
useEffect(() => {
handleOnConnect();
}, [groupByVar, groupByLLM, formatting])
useEffect(() => {
if (data.refresh && data.refresh === true) {
// Recreate the visualization:
setDataPropsForNode(id, { refresh: false });
handleOnConnect();
}
}, [data, id, handleOnConnect, setDataPropsForNode]);
return (
<div className="join-node cfnode">
<NodeLabel title={data.title || 'Join Node'}
nodeId={id}
icon={<IconArrowMerge size='14pt'/>}
customButtons={[
<JoinedTextsPopover key='joined-text-previews' textInfos={joinedTexts} onHover={handleOnConnect} onClick={openInfoModal} getColorForLLM={getColorForLLMAndSetIfNotFound} />
]} />
<Modal title={'List of joined inputs (' + joinedTexts.length + ' total)'} size='xl' opened={infoModalOpened} onClose={closeInfoModal} styles={{header: {backgroundColor: '#FFD700'}, root: {position: 'relative', left: '-5%'}}}>
<Box size={600} m='lg' mt='xl'>
{displayJoinedTexts(joinedTexts, getColorForLLMAndSetIfNotFound)}
</Box>
</Modal>
<div style={{display: 'flex', justifyContent: 'left', maxWidth: '100%', marginBottom: '10px'}}>
<Text mt='3px' mr='xs'>Join</Text>
<NativeSelect onChange={(e) => setGroupByVar(e.target.value)}
className='nodrag nowheel'
data={groupByVars}
size="xs"
value={groupByVar}
miw='80px'
mr='xs' />
</div>
{inputHasLLMs ?
<div style={{display: 'flex', justifyContent: 'left', maxWidth: '100%', marginBottom: '10px'}}>
<NativeSelect onChange={(e) => setGroupByLLM(e.target.value)}
className='nodrag nowheel'
data={["within", "across"]}
size="xs"
value={groupByLLM}
maw='80px'
mr='xs'
ml='40px' />
<Text mt='3px'>LLMs</Text>
</div>
: <></>}
<Divider my="xs" label="formatting" labelPosition="center" />
<NativeSelect onChange={(e) => setFormatting(e.target.value)}
className='nodrag nowheel'
data={formattingOptions}
size="xs"
value={formatting}
miw='80px' />
<Handle
type="target"
position="left"
id="__input"
className="grouped-handle"
style={{ top: "50%" }}
onConnect={handleOnConnect}
/>
<Handle
type="source"
position="right"
id="output"
className="grouped-handle"
style={{ top: "50%" }}
/>
</div>);
};
export default JoinNode;

View File

@ -475,7 +475,7 @@ const LLMResponseInspector = ({ jsonResponses, wideFormat }) => {
value={multiSelectValue}
clearSearchOnChange={true}
clearSearchOnBlur={true}
w='80%' />
w={wideFormat ? '80%' : '100%'} />
<Checkbox checked={onlyShowScores}
label="Only show scores"
onChange={(e) => setOnlyShowScores(e.currentTarget.checked)}

View File

@ -78,10 +78,9 @@ const PromptNode = ({ data, id, type: node_type }) => {
// Get state from the Zustand store:
const edges = useStore((state) => state.edges);
const output = useStore((state) => state.output);
const pullInputData = useStore((state) => state.pullInputData);
const setDataPropsForNode = useStore((state) => state.setDataPropsForNode);
const pingOutputNodes = useStore((state) => state.pingOutputNodes);
const getNode = useStore((state) => state.getNode);
// API Keys (set by user in popup GlobalSettingsModal)
const apiKeys = useStore((state) => state.apiKeys);
@ -208,52 +207,10 @@ const PromptNode = ({ data, id, type: node_type }) => {
}
}, [data]);
// Pull all inputs needed to request responses.
// Returns [prompt, vars dict]
const pullInputData = (_targetHandles) => {
// Pull data from each source recursively:
const pulled_data = {};
const store_data = (_texts, _varname, _data) => {
if (_varname in _data)
_data[_varname] = _data[_varname].concat(_texts);
else
_data[_varname] = _texts;
};
const get_outputs = (varnames, nodeId) => {
varnames.forEach(varname => {
// Find the relevant edge(s):
edges.forEach(e => {
if (e.target == nodeId && e.targetHandle == varname) {
// Get the immediate output:
let out = output(e.source, e.sourceHandle);
if (!out || !Array.isArray(out) || out.length === 0) return;
// Check the format of the output. Can be str or dict with 'text' and more attrs:
if (typeof out[0] === 'object') {
out.forEach(obj => store_data([obj], varname, pulled_data));
}
else {
// Save the list of strings from the pulled output under the var 'varname'
store_data(out, varname, pulled_data);
}
// Get any vars that the output depends on, and recursively collect those outputs as well:
const n_vars = getNode(e.source).data.vars;
if (n_vars && Array.isArray(n_vars) && n_vars.length > 0)
get_outputs(n_vars, e.source);
}
});
});
};
get_outputs(_targetHandles, id);
return pulled_data;
};
// Chat nodes only. Pulls input data attached to the 'past conversations' handle.
// Returns a tuple (past_chat_llms, __past_chats), where both are undefined if nothing is connected.
const pullInputChats = () => {
const pulled_data = pullInputData(['__past_chats']);
const pulled_data = pullInputData(['__past_chats'], id);
if (!('__past_chats' in pulled_data)) return [undefined, undefined];
// For storing the unique LLMs in past_chats:
@ -313,12 +270,12 @@ const PromptNode = ({ data, id, type: node_type }) => {
const [promptPreviews, setPromptPreviews] = useState([]);
const handlePreviewHover = () => {
// Pull input data and prompt
const pulled_vars = pullInputData(templateVars);
const pulled_vars = pullInputData(templateVars, id);
fetch_from_backend('generatePrompts', {
prompt: promptText,
vars: pulled_vars,
}).then(prompts => {
setPromptPreviews(prompts.map(p => (new PromptInfo(p))));
setPromptPreviews(prompts.map(p => (new PromptInfo(p.toString()))));
});
pullInputChats();
@ -352,7 +309,7 @@ const PromptNode = ({ data, id, type: node_type }) => {
}
// Pull the input data
const pulled_vars = pullInputData(templateVars);
const pulled_vars = pullInputData(templateVars, id);
const llms = _llmItemsCurrState.map(item => item.model);
const num_llms = llms.length;
@ -442,6 +399,20 @@ const PromptNode = ({ data, id, type: node_type }) => {
return;
}
// Check if pulled chats includes undefined content.
// This could happen with Join nodes, where there is no longer a single "prompt" (user prompt)
// of the chat provenance. Instead of blocking this behavior, we replace undefined with a blank string,
// and output a warning to the console.
if (!pulled_chats.every(c => c.messages.every(m => m.content !== undefined))) {
console.warn("Chat history contains undefined content. This can happen if a Join Node was used, \
as there is no longer a single prompt as the provenance of the conversation. \
Soft failing by replacing undefined with empty strings.");
pulled_chats.forEach(c => {c.messages = c.messages.map(m => {
if (m.content !== undefined) return m;
else return {...m, content: " "}; // the string contains a single space since PaLM2 refuses to answer with empty strings
})});
}
// Override LLM list with the past llm info (unique LLMs in prior responses)
_llmItemsCurrState = past_chat_llms;
@ -462,13 +433,13 @@ const PromptNode = ({ data, id, type: node_type }) => {
setProgressAnimated(true);
// Pull the data to fill in template input variables, if any
const pulled_data = pullInputData(templateVars);
const pulled_data = pullInputData(templateVars, id);
const prompt_template = promptText;
const rejected = (err) => {
setStatus('error');
setContChatToggleDisabled(false);
triggerAlert(err.message);
triggerAlert(err.message || err);
};
// Fetch info about the number of queries we'll need to make

View File

@ -45,7 +45,7 @@ export default function CustomEdge({
// Thanks in part to oshanley https://github.com/wbkd/react-flow/issues/1211#issuecomment-1585032930
return (
<EdgePathContainer onPointerEnter={()=>setHovering(true)} onPointerLeave={()=>setHovering(false)} onClick={()=>console.log('click')}>
<EdgePathContainer onPointerEnter={()=>setHovering(true)} onPointerLeave={()=>setHovering(false)}>
<BaseEdge path={edgePath} markerEnd={markerEnd} style={{...style, stroke: (hovering ? '#000' : '#999')}} />
<EdgeLabelRenderer>
<div

View File

@ -371,9 +371,9 @@ function run_over_responses(eval_func: (resp: ResponseInfo) => any, responses: A
* @param vars a dict of the template variables to fill the prompt template with, by name. (See countQueries docstring for more info).
* @returns An array of strings representing the prompts that will be sent out. Note that this could include unfilled template vars.
*/
export async function generatePrompts(root_prompt: string, vars: Dict): Promise<string[]> {
export async function generatePrompts(root_prompt: string, vars: Dict): Promise<PromptTemplate[]> {
const gen_prompts = new PromptPermutationGenerator(root_prompt);
const all_prompt_permutations = Array.from(gen_prompts.generate(vars)).map(p => p.toString());
const all_prompt_permutations = Array.from(gen_prompts.generate(vars));
return all_prompt_permutations;
}

View File

@ -26,7 +26,7 @@ export const colorPalettes = {
var: varColorPalette,
}
const refreshableOutputNodeTypes = new Set(['evaluator', 'prompt', 'inspect', 'vis', 'llmeval', 'textfields', 'chat', 'simpleval']);
const refreshableOutputNodeTypes = new Set(['evaluator', 'prompt', 'inspect', 'vis', 'llmeval', 'textfields', 'chat', 'simpleval', 'join']);
export let initLLMProviders = [
{ name: "GPT3.5", emoji: "🤖", model: "gpt-3.5-turbo", base_model: "gpt-3.5-turbo", temp: 1.0 }, // The base_model designates what settings form will be used, and must be unique.
@ -204,6 +204,56 @@ const useStore = create((set, get) => ({
return null;
}
},
// Pull all inputs needed to request responses.
// Returns [prompt, vars dict]
pullInputData: (_targetHandles, node_id) => {
// Functions/data from the store:
const getNode = get().getNode;
const output = get().output;
const edges = get().edges;
// Helper function to store collected data in dict:
const store_data = (_texts, _varname, _data) => {
if (_varname in _data)
_data[_varname] = _data[_varname].concat(_texts);
else
_data[_varname] = _texts;
};
// Pull data from each source recursively:
const pulled_data = {};
const get_outputs = (varnames, nodeId) => {
varnames.forEach(varname => {
// Find the relevant edge(s):
edges.forEach(e => {
if (e.target == nodeId && e.targetHandle == varname) {
// Get the immediate output:
let out = output(e.source, e.sourceHandle);
if (!out || !Array.isArray(out) || out.length === 0) return;
// Check the format of the output. Can be str or dict with 'text' and more attrs:
if (typeof out[0] === 'object') {
out.forEach(obj => store_data([obj], varname, pulled_data));
}
else {
// Save the list of strings from the pulled output under the var 'varname'
store_data(out, varname, pulled_data);
}
// Get any vars that the output depends on, and recursively collect those outputs as well:
const n_vars = getNode(e.source).data.vars;
if (n_vars && Array.isArray(n_vars) && n_vars.length > 0)
get_outputs(n_vars, e.source);
}
});
});
};
get_outputs(_targetHandles, node_id);
return pulled_data;
},
setDataPropsForNode: (id, data_props) => {
set({
nodes: (nds =>

View File

@ -409,6 +409,9 @@
color: #444;
white-space: pre-wrap;
}
.join-text-preview {
margin: 0px 0px 10px 0px;
}
.small-response {
font-size: 8pt;
@ -531,6 +534,10 @@
border-color: #222;
}
.join-node {
min-width: 200px;
}
.tabular-data-node {
min-width: 280px;
}
@ -652,7 +659,7 @@
.text-field-fixed .mantine-Textarea-wrapper textarea {
resize: vertical;
overflow-y: auto;
width: 280px;
width: 260px;
padding: calc(0.5rem / 3);
font-size: 10pt;
font-family: monospace;