AFLplusplus/src/afl-common.c
2021-02-28 00:12:39 +01:00

1179 lines
25 KiB
C

/*
american fuzzy lop++ - common routines
--------------------------------------
Originally written by Michal Zalewski
Now maintained by Marc Heuse <mh@mh-sec.de>,
Heiko Eißfeldt <heiko.eissfeldt@hexco.de> and
Andrea Fioraldi <andreafioraldi@gmail.com>
Copyright 2016, 2017 Google Inc. All rights reserved.
Copyright 2019-2020 AFLplusplus Project. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0
Gather some functions common to multiple executables
- detect_file_args
*/
#include <stdlib.h>
#include <stdio.h>
#include <strings.h>
#include <math.h>
#include "debug.h"
#include "alloc-inl.h"
#include "envs.h"
#include "common.h"
/* Detect @@ in args. */
#ifndef __glibc__
#include <unistd.h>
#endif
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
u8 be_quiet = 0;
u8 *doc_path = "";
u8 last_intr = 0;
#ifndef AFL_PATH
#define AFL_PATH "/usr/local/lib/afl/"
#endif
void detect_file_args(char **argv, u8 *prog_in, bool *use_stdin) {
u32 i = 0;
u8 cwd[PATH_MAX];
if (getcwd(cwd, (size_t)sizeof(cwd)) == NULL) { PFATAL("getcwd() failed"); }
/* we are working with libc-heap-allocated argvs. So do not mix them with
* other allocation APIs like ck_alloc. That would disturb the free() calls.
*/
while (argv[i]) {
u8 *aa_loc = strstr(argv[i], "@@");
if (aa_loc) {
if (!prog_in) { FATAL("@@ syntax is not supported by this tool."); }
*use_stdin = false;
if (prog_in[0] != 0) { // not afl-showmap special case
u8 *n_arg;
/* Be sure that we're always using fully-qualified paths. */
*aa_loc = 0;
/* Construct a replacement argv value. */
if (prog_in[0] == '/') {
n_arg = alloc_printf("%s%s%s", argv[i], prog_in, aa_loc + 2);
} else {
n_arg = alloc_printf("%s%s/%s%s", argv[i], cwd, prog_in, aa_loc + 2);
}
ck_free(argv[i]);
argv[i] = n_arg;
}
}
i++;
}
/* argvs are automatically freed at exit. */
}
/* duplicate the system argv so that
we can edit (and free!) it later */
char **argv_cpy_dup(int argc, char **argv) {
int i = 0;
char **ret = ck_alloc((argc + 1) * sizeof(char *));
if (unlikely(!ret)) { FATAL("Amount of arguments specified is too high"); }
for (i = 0; i < argc; i++) {
ret[i] = ck_strdup(argv[i]);
}
ret[i] = NULL;
return ret;
}
/* frees all args in the given argv,
previously created by argv_cpy_dup */
void argv_cpy_free(char **argv) {
u32 i = 0;
while (argv[i]) {
ck_free(argv[i]);
argv[i] = NULL;
i++;
}
ck_free(argv);
}
/* Rewrite argv for QEMU. */
char **get_qemu_argv(u8 *own_loc, u8 **target_path_p, int argc, char **argv) {
if (!unlikely(own_loc)) { FATAL("BUG: param own_loc is NULL"); }
u8 *tmp, *cp = NULL, *rsl, *own_copy;
char **new_argv = ck_alloc(sizeof(char *) * (argc + 4));
if (unlikely(!new_argv)) { FATAL("Illegal amount of arguments specified"); }
memcpy(&new_argv[3], &argv[1], (int)(sizeof(char *)) * (argc - 1));
new_argv[argc + 3] = NULL;
new_argv[2] = *target_path_p;
new_argv[1] = "--";
/* Now we need to actually find the QEMU binary to put in argv[0]. */
tmp = getenv("AFL_PATH");
if (tmp) {
cp = alloc_printf("%s/afl-qemu-trace", tmp);
if (access(cp, X_OK)) { FATAL("Unable to find '%s'", tmp); }
*target_path_p = new_argv[0] = cp;
return new_argv;
}
own_copy = ck_strdup(own_loc);
rsl = strrchr(own_copy, '/');
if (rsl) {
*rsl = 0;
cp = alloc_printf("%s/afl-qemu-trace", own_copy);
ck_free(own_copy);
if (!access(cp, X_OK)) {
*target_path_p = new_argv[0] = cp;
return new_argv;
}
} else {
ck_free(own_copy);
}
if (!access(BIN_PATH "/afl-qemu-trace", X_OK)) {
if (cp) { ck_free(cp); }
*target_path_p = new_argv[0] = ck_strdup(BIN_PATH "/afl-qemu-trace");
return new_argv;
}
SAYF("\n" cLRD "[-] " cRST
"Oops, unable to find the 'afl-qemu-trace' binary. The binary must be "
"built\n"
" separately by following the instructions in "
"qemu_mode/README.md. "
"If you\n"
" already have the binary installed, you may need to specify "
"AFL_PATH in the\n"
" environment.\n\n"
" Of course, even without QEMU, afl-fuzz can still work with "
"binaries that are\n"
" instrumented at compile time with afl-gcc. It is also possible to "
"use it as a\n"
" traditional non-instrumented fuzzer by specifying '-n' in the "
"command "
"line.\n");
FATAL("Failed to locate 'afl-qemu-trace'.");
}
/* Rewrite argv for Wine+QEMU. */
char **get_wine_argv(u8 *own_loc, u8 **target_path_p, int argc, char **argv) {
if (!unlikely(own_loc)) { FATAL("BUG: param own_loc is NULL"); }
u8 *tmp, *cp = NULL, *rsl, *own_copy;
char **new_argv = ck_alloc(sizeof(char *) * (argc + 3));
if (unlikely(!new_argv)) { FATAL("Illegal amount of arguments specified"); }
memcpy(&new_argv[2], &argv[1], (int)(sizeof(char *)) * (argc - 1));
new_argv[argc + 2] = NULL;
new_argv[1] = *target_path_p;
/* Now we need to actually find the QEMU binary to put in argv[0]. */
tmp = getenv("AFL_PATH");
if (tmp) {
cp = alloc_printf("%s/afl-qemu-trace", tmp);
if (access(cp, X_OK)) { FATAL("Unable to find '%s'", tmp); }
ck_free(cp);
cp = alloc_printf("%s/afl-wine-trace", tmp);
if (access(cp, X_OK)) { FATAL("Unable to find '%s'", tmp); }
*target_path_p = new_argv[0] = cp;
return new_argv;
}
own_copy = ck_strdup(own_loc);
rsl = strrchr(own_copy, '/');
if (rsl) {
*rsl = 0;
cp = alloc_printf("%s/afl-qemu-trace", own_copy);
if (cp && !access(cp, X_OK)) {
ck_free(cp);
cp = alloc_printf("%s/afl-wine-trace", own_copy);
if (!access(cp, X_OK)) {
*target_path_p = new_argv[0] = cp;
return new_argv;
}
}
ck_free(own_copy);
} else {
ck_free(own_copy);
}
u8 *ncp = BIN_PATH "/afl-qemu-trace";
if (!access(ncp, X_OK)) {
ncp = BIN_PATH "/afl-wine-trace";
if (!access(ncp, X_OK)) {
*target_path_p = new_argv[0] = ck_strdup(ncp);
return new_argv;
}
}
SAYF("\n" cLRD "[-] " cRST
"Oops, unable to find the '%s' binary. The binary must be "
"built\n"
" separately by following the instructions in "
"qemu_mode/README.md. "
"If you\n"
" already have the binary installed, you may need to specify "
"AFL_PATH in the\n"
" environment.\n\n"
" Of course, even without QEMU, afl-fuzz can still work with "
"binaries that are\n"
" instrumented at compile time with afl-gcc. It is also possible to "
"use it as a\n"
" traditional non-instrumented fuzzer by specifying '-n' in the "
"command "
"line.\n",
ncp);
FATAL("Failed to locate '%s'.", ncp);
}
/* Get libqasan path. */
u8 *get_libqasan_path(u8 *own_loc) {
if (!unlikely(own_loc)) { FATAL("BUG: param own_loc is NULL"); }
u8 *tmp, *cp = NULL, *rsl, *own_copy;
tmp = getenv("AFL_PATH");
if (tmp) {
cp = alloc_printf("%s/libqasan.so", tmp);
if (access(cp, X_OK)) { FATAL("Unable to find '%s'", tmp); }
return cp;
}
own_copy = ck_strdup(own_loc);
rsl = strrchr(own_copy, '/');
if (rsl) {
*rsl = 0;
cp = alloc_printf("%s/libqasan.so", own_copy);
ck_free(own_copy);
if (!access(cp, X_OK)) { return cp; }
} else {
ck_free(own_copy);
}
if (!access(AFL_PATH "/libqasan.so", X_OK)) {
if (cp) { ck_free(cp); }
return ck_strdup(AFL_PATH "/libqasan.so");
}
SAYF("\n" cLRD "[-] " cRST
"Oops, unable to find the 'libqasan.so' binary. The binary must be "
"built\n"
" separately by following the instructions in "
"qemu_mode/libqasan/README.md. "
"If you\n"
" already have the binary installed, you may need to specify "
"AFL_PATH in the\n"
" environment.\n");
FATAL("Failed to locate 'libqasan.so'.");
}
/* Find binary, used by analyze, showmap, tmin
@returns the path, allocating the string */
u8 *find_binary(u8 *fname) {
// TODO: Merge this function with check_binary of afl-fuzz-init.c
u8 *env_path = NULL;
u8 *target_path = NULL;
struct stat st;
if (unlikely(!fname)) { FATAL("No binary supplied"); }
if (strchr(fname, '/') || !(env_path = getenv("PATH"))) {
target_path = ck_strdup(fname);
if (stat(target_path, &st) || !S_ISREG(st.st_mode) ||
!(st.st_mode & 0111) || st.st_size < 4) {
ck_free(target_path);
FATAL("Program '%s' not found or not executable", fname);
}
} else {
while (env_path) {
u8 *cur_elem, *delim = strchr(env_path, ':');
if (delim) {
cur_elem = ck_alloc(delim - env_path + 1);
if (unlikely(!cur_elem)) {
FATAL(
"Unexpected overflow when processing ENV. This should never "
"happend.");
}
memcpy(cur_elem, env_path, delim - env_path);
delim++;
} else {
cur_elem = ck_strdup(env_path);
}
env_path = delim;
if (cur_elem[0]) {
target_path = alloc_printf("%s/%s", cur_elem, fname);
} else {
target_path = ck_strdup(fname);
}
ck_free(cur_elem);
if (!stat(target_path, &st) && S_ISREG(st.st_mode) &&
(st.st_mode & 0111) && st.st_size >= 4) {
break;
}
ck_free(target_path);
target_path = NULL;
}
if (!target_path) {
FATAL("Program '%s' not found or not executable", fname);
}
}
return target_path;
}
/* Parses the kill signal environment variable, FATALs on error.
If the env is not set, sets the env to default_signal for the signal handlers
and returns the default_signal. */
int parse_afl_kill_signal_env(u8 *afl_kill_signal_env, int default_signal) {
if (afl_kill_signal_env && afl_kill_signal_env[0]) {
char *endptr;
u8 signal_code;
signal_code = (u8)strtoul(afl_kill_signal_env, &endptr, 10);
/* Did we manage to parse the full string? */
if (*endptr != '\0' || endptr == (char *)afl_kill_signal_env) {
FATAL("Invalid AFL_KILL_SIGNAL: %s (expected unsigned int)",
afl_kill_signal_env);
}
return signal_code;
} else {
char *sigstr = alloc_printf("%d", default_signal);
if (!sigstr) { FATAL("Failed to alloc mem for signal buf"); }
/* Set the env for signal handler */
setenv("AFL_KILL_SIGNAL", sigstr, 1);
free(sigstr);
return default_signal;
}
}
static inline unsigned int helper_min3(unsigned int a, unsigned int b,
unsigned int c) {
return a < b ? (a < c ? a : c) : (b < c ? b : c);
}
// from
// https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#C
static int string_distance_levenshtein(char *s1, char *s2) {
unsigned int s1len, s2len, x, y, lastdiag, olddiag;
s1len = strlen(s1);
s2len = strlen(s2);
unsigned int column[s1len + 1];
column[s1len] = 1;
for (y = 1; y <= s1len; y++)
column[y] = y;
for (x = 1; x <= s2len; x++) {
column[0] = x;
for (y = 1, lastdiag = x - 1; y <= s1len; y++) {
olddiag = column[y];
column[y] = helper_min3(column[y] + 1, column[y - 1] + 1,
lastdiag + (s1[y - 1] == s2[x - 1] ? 0 : 1));
lastdiag = olddiag;
}
}
return column[s1len];
}
#define ENV_SIMILARITY_TRESHOLD 3
void print_suggested_envs(char *mispelled_env) {
size_t env_name_len =
strcspn(mispelled_env, "=") - 4; // remove the AFL_prefix
char *env_name = ck_alloc(env_name_len + 1);
memcpy(env_name, mispelled_env + 4, env_name_len);
char *seen = ck_alloc(sizeof(afl_environment_variables) / sizeof(char *));
int found = 0;
int j;
for (j = 0; afl_environment_variables[j] != NULL; ++j) {
char *afl_env = afl_environment_variables[j] + 4;
int distance = string_distance_levenshtein(afl_env, env_name);
if (distance < ENV_SIMILARITY_TRESHOLD && seen[j] == 0) {
SAYF("Did you mean %s?\n", afl_environment_variables[j]);
seen[j] = 1;
found = 1;
}
}
if (found) goto cleanup;
for (j = 0; afl_environment_variables[j] != NULL; ++j) {
char * afl_env = afl_environment_variables[j] + 4;
size_t afl_env_len = strlen(afl_env);
char * reduced = ck_alloc(afl_env_len + 1);
size_t start = 0;
while (start < afl_env_len) {
size_t end = start + strcspn(afl_env + start, "_") + 1;
memcpy(reduced, afl_env, start);
if (end < afl_env_len)
memcpy(reduced + start, afl_env + end, afl_env_len - end);
reduced[afl_env_len - end + start] = 0;
int distance = string_distance_levenshtein(reduced, env_name);
if (distance < ENV_SIMILARITY_TRESHOLD && seen[j] == 0) {
SAYF("Did you mean %s?\n", afl_environment_variables[j]);
seen[j] = 1;
found = 1;
}
start = end;
};
ck_free(reduced);
}
if (found) goto cleanup;
char * reduced = ck_alloc(env_name_len + 1);
size_t start = 0;
while (start < env_name_len) {
size_t end = start + strcspn(env_name + start, "_") + 1;
memcpy(reduced, env_name, start);
if (end < env_name_len)
memcpy(reduced + start, env_name + end, env_name_len - end);
reduced[env_name_len - end + start] = 0;
for (j = 0; afl_environment_variables[j] != NULL; ++j) {
int distance = string_distance_levenshtein(
afl_environment_variables[j] + 4, reduced);
if (distance < ENV_SIMILARITY_TRESHOLD && seen[j] == 0) {
SAYF("Did you mean %s?\n", afl_environment_variables[j]);
seen[j] = 1;
}
}
start = end;
};
ck_free(reduced);
cleanup:
ck_free(env_name);
ck_free(seen);
}
void check_environment_vars(char **envp) {
if (be_quiet) { return; }
int index = 0, issue_detected = 0;
char *env, *val, *ignore = getenv("AFL_IGNORE_UNKNOWN_ENVS");
while ((env = envp[index++]) != NULL) {
if (strncmp(env, "ALF_", 4) == 0 || strncmp(env, "_ALF", 4) == 0 ||
strncmp(env, "__ALF", 5) == 0 || strncmp(env, "_AFL", 4) == 0 ||
strncmp(env, "__AFL", 5) == 0) {
WARNF("Potentially mistyped AFL environment variable: %s", env);
issue_detected = 1;
} else if (strncmp(env, "AFL_", 4) == 0) {
int i = 0, match = 0;
while (match == 0 && afl_environment_variables[i] != NULL) {
if (strncmp(env, afl_environment_variables[i],
strlen(afl_environment_variables[i])) == 0 &&
env[strlen(afl_environment_variables[i])] == '=') {
match = 1;
if ((val = getenv(afl_environment_variables[i])) && !*val) {
WARNF(
"AFL environment variable %s defined but is empty, this can "
"lead to unexpected consequences",
afl_environment_variables[i]);
issue_detected = 1;
}
} else {
i++;
}
}
i = 0;
while (match == 0 && afl_environment_deprecated[i] != NULL) {
if (strncmp(env, afl_environment_deprecated[i],
strlen(afl_environment_deprecated[i])) == 0 &&
env[strlen(afl_environment_deprecated[i])] == '=') {
match = 1;
WARNF("AFL environment variable %s is deprecated!",
afl_environment_deprecated[i]);
issue_detected = 1;
} else {
i++;
}
}
if (match == 0 && !ignore) {
WARNF("Mistyped AFL environment variable: %s", env);
issue_detected = 1;
print_suggested_envs(env);
}
}
}
if (issue_detected) { sleep(2); }
}
char *get_afl_env(char *env) {
char *val;
if ((val = getenv(env)) != NULL) {
if (!be_quiet) {
OKF("Loaded environment variable %s with value %s", env, val);
}
}
return val;
}
/* Read mask bitmap from file. This is for the -B option. */
void read_bitmap(u8 *fname, u8 *map, size_t len) {
s32 fd = open(fname, O_RDONLY);
if (fd < 0) { PFATAL("Unable to open '%s'", fname); }
ck_read(fd, map, len, fname);
close(fd);
}
u64 get_cur_time(void) {
struct timeval tv;
struct timezone tz;
gettimeofday(&tv, &tz);
return (tv.tv_sec * 1000ULL) + (tv.tv_usec / 1000);
}
/* Get unix time in microseconds */
u64 get_cur_time_us(void) {
struct timeval tv;
struct timezone tz;
gettimeofday(&tv, &tz);
return (tv.tv_sec * 1000000ULL) + tv.tv_usec;
}
/* Describe integer. The buf should be
at least 6 bytes to fit all ints we randomly see.
Will return buf for convenience. */
u8 *stringify_int(u8 *buf, size_t len, u64 val) {
\
#define CHK_FORMAT(_divisor, _limit_mult, _fmt, _cast) \
do { \
\
if (val < (_divisor) * (_limit_mult)) { \
\
snprintf(buf, len, _fmt, ((_cast)val) / (_divisor)); \
return buf; \
\
} \
\
} while (0)
/* 0-9999 */
CHK_FORMAT(1, 10000, "%llu", u64);
/* 10.0k - 99.9k */
CHK_FORMAT(1000, 99.95, "%0.01fk", double);
/* 100k - 999k */
CHK_FORMAT(1000, 1000, "%lluk", u64);
/* 1.00M - 9.99M */
CHK_FORMAT(1000 * 1000, 9.995, "%0.02fM", double);
/* 10.0M - 99.9M */
CHK_FORMAT(1000 * 1000, 99.95, "%0.01fM", double);
/* 100M - 999M */
CHK_FORMAT(1000 * 1000, 1000, "%lluM", u64);
/* 1.00G - 9.99G */
CHK_FORMAT(1000LL * 1000 * 1000, 9.995, "%0.02fG", double);
/* 10.0G - 99.9G */
CHK_FORMAT(1000LL * 1000 * 1000, 99.95, "%0.01fG", double);
/* 100G - 999G */
CHK_FORMAT(1000LL * 1000 * 1000, 1000, "%lluG", u64);
/* 1.00T - 9.99G */
CHK_FORMAT(1000LL * 1000 * 1000 * 1000, 9.995, "%0.02fT", double);
/* 10.0T - 99.9T */
CHK_FORMAT(1000LL * 1000 * 1000 * 1000, 99.95, "%0.01fT", double);
/* 100T+ */
strncpy(buf, "infty", len);
buf[len - 1] = '\0';
return buf;
}
/* Describe float. Similar as int. */
u8 *stringify_float(u8 *buf, size_t len, double val) {
if (val < 99.995) {
snprintf(buf, len, "%0.02f", val);
} else if (val < 999.95) {
snprintf(buf, len, "%0.01f", val);
} else if (unlikely(isnan(val) || isinf(val))) {
strcpy(buf, "inf");
} else {
stringify_int(buf, len, (u64)val);
}
return buf;
}
/* Describe integer as memory size. */
u8 *stringify_mem_size(u8 *buf, size_t len, u64 val) {
/* 0-9999 */
CHK_FORMAT(1, 10000, "%llu B", u64);
/* 10.0k - 99.9k */
CHK_FORMAT(1024, 99.95, "%0.01f kB", double);
/* 100k - 999k */
CHK_FORMAT(1024, 1000, "%llu kB", u64);
/* 1.00M - 9.99M */
CHK_FORMAT(1024 * 1024, 9.995, "%0.02f MB", double);
/* 10.0M - 99.9M */
CHK_FORMAT(1024 * 1024, 99.95, "%0.01f MB", double);
/* 100M - 999M */
CHK_FORMAT(1024 * 1024, 1000, "%llu MB", u64);
/* 1.00G - 9.99G */
CHK_FORMAT(1024LL * 1024 * 1024, 9.995, "%0.02f GB", double);
/* 10.0G - 99.9G */
CHK_FORMAT(1024LL * 1024 * 1024, 99.95, "%0.01f GB", double);
/* 100G - 999G */
CHK_FORMAT(1024LL * 1024 * 1024, 1000, "%llu GB", u64);
/* 1.00T - 9.99G */
CHK_FORMAT(1024LL * 1024 * 1024 * 1024, 9.995, "%0.02f TB", double);
/* 10.0T - 99.9T */
CHK_FORMAT(1024LL * 1024 * 1024 * 1024, 99.95, "%0.01f TB", double);
#undef CHK_FORMAT
/* 100T+ */
strncpy(buf, "infty", len - 1);
buf[len - 1] = '\0';
return buf;
}
/* Describe time delta as string.
Returns a pointer to buf for convenience. */
u8 *stringify_time_diff(u8 *buf, size_t len, u64 cur_ms, u64 event_ms) {
if (!event_ms) {
snprintf(buf, len, "none seen yet");
} else {
u64 delta;
s32 t_d, t_h, t_m, t_s;
u8 val_buf[STRINGIFY_VAL_SIZE_MAX];
delta = cur_ms - event_ms;
t_d = delta / 1000 / 60 / 60 / 24;
t_h = (delta / 1000 / 60 / 60) % 24;
t_m = (delta / 1000 / 60) % 60;
t_s = (delta / 1000) % 60;
stringify_int(val_buf, sizeof(val_buf), t_d);
snprintf(buf, len, "%s days, %d hrs, %d min, %d sec", val_buf, t_h, t_m,
t_s);
}
return buf;
}
/* Unsafe Describe integer. The buf sizes are not checked.
This is unsafe but fast.
Will return buf for convenience. */
u8 *u_stringify_int(u8 *buf, u64 val) {
\
#define CHK_FORMAT(_divisor, _limit_mult, _fmt, _cast) \
do { \
\
if (val < (_divisor) * (_limit_mult)) { \
\
sprintf(buf, _fmt, ((_cast)val) / (_divisor)); \
return buf; \
\
} \
\
} while (0)
/* 0-9999 */
CHK_FORMAT(1, 10000, "%llu", u64);
/* 10.0k - 99.9k */
CHK_FORMAT(1000, 99.95, "%0.01fk", double);
/* 100k - 999k */
CHK_FORMAT(1000, 1000, "%lluk", u64);
/* 1.00M - 9.99M */
CHK_FORMAT(1000 * 1000, 9.995, "%0.02fM", double);
/* 10.0M - 99.9M */
CHK_FORMAT(1000 * 1000, 99.95, "%0.01fM", double);
/* 100M - 999M */
CHK_FORMAT(1000 * 1000, 1000, "%lluM", u64);
/* 1.00G - 9.99G */
CHK_FORMAT(1000LL * 1000 * 1000, 9.995, "%0.02fG", double);
/* 10.0G - 99.9G */
CHK_FORMAT(1000LL * 1000 * 1000, 99.95, "%0.01fG", double);
/* 100G - 999G */
CHK_FORMAT(1000LL * 1000 * 1000, 1000, "%lluG", u64);
/* 1.00T - 9.99G */
CHK_FORMAT(1000LL * 1000 * 1000 * 1000, 9.995, "%0.02fT", double);
/* 10.0T - 99.9T */
CHK_FORMAT(1000LL * 1000 * 1000 * 1000, 99.95, "%0.01fT", double);
/* 100T+ */
strcpy(buf, "infty");
return buf;
}
/* Unsafe describe float. Similar as unsafe int. */
u8 *u_stringify_float(u8 *buf, double val) {
if (val < 99.995) {
sprintf(buf, "%0.02f", val);
} else if (val < 999.95) {
sprintf(buf, "%0.01f", val);
} else if (unlikely(isnan(val) || isinf(val))) {
strcpy(buf, "infinite");
} else {
return u_stringify_int(buf, (u64)val);
}
return buf;
}
/* Unsafe describe integer as memory size. */
u8 *u_stringify_mem_size(u8 *buf, u64 val) {
/* 0-9999 */
CHK_FORMAT(1, 10000, "%llu B", u64);
/* 10.0k - 99.9k */
CHK_FORMAT(1024, 99.95, "%0.01f kB", double);
/* 100k - 999k */
CHK_FORMAT(1024, 1000, "%llu kB", u64);
/* 1.00M - 9.99M */
CHK_FORMAT(1024 * 1024, 9.995, "%0.02f MB", double);
/* 10.0M - 99.9M */
CHK_FORMAT(1024 * 1024, 99.95, "%0.01f MB", double);
/* 100M - 999M */
CHK_FORMAT(1024 * 1024, 1000, "%llu MB", u64);
/* 1.00G - 9.99G */
CHK_FORMAT(1024LL * 1024 * 1024, 9.995, "%0.02f GB", double);
/* 10.0G - 99.9G */
CHK_FORMAT(1024LL * 1024 * 1024, 99.95, "%0.01f GB", double);
/* 100G - 999G */
CHK_FORMAT(1024LL * 1024 * 1024, 1000, "%llu GB", u64);
/* 1.00T - 9.99G */
CHK_FORMAT(1024LL * 1024 * 1024 * 1024, 9.995, "%0.02f TB", double);
/* 10.0T - 99.9T */
CHK_FORMAT(1024LL * 1024 * 1024 * 1024, 99.95, "%0.01f TB", double);
#undef CHK_FORMAT
/* 100T+ */
strcpy(buf, "infty");
return buf;
}
/* Unsafe describe time delta as string.
Returns a pointer to buf for convenience. */
u8 *u_stringify_time_diff(u8 *buf, u64 cur_ms, u64 event_ms) {
if (!event_ms) {
sprintf(buf, "none seen yet");
} else {
u64 delta;
s32 t_d, t_h, t_m, t_s;
u8 val_buf[STRINGIFY_VAL_SIZE_MAX];
delta = cur_ms - event_ms;
t_d = delta / 1000 / 60 / 60 / 24;
t_h = (delta / 1000 / 60 / 60) % 24;
t_m = (delta / 1000 / 60) % 60;
t_s = (delta / 1000) % 60;
u_stringify_int(val_buf, t_d);
sprintf(buf, "%s days, %d hrs, %d min, %d sec", val_buf, t_h, t_m, t_s);
}
return buf;
}
/* Reads the map size from ENV */
u32 get_map_size(void) {
uint32_t map_size = (MAP_SIZE << 2); // needed for target ctors :(
char * ptr;
if ((ptr = getenv("AFL_MAP_SIZE")) || (ptr = getenv("AFL_MAPSIZE"))) {
map_size = atoi(ptr);
if (!map_size || map_size > (1 << 29)) {
FATAL("illegal AFL_MAP_SIZE %u, must be between %u and %u", map_size, 32U,
1U << 29);
}
if (map_size % 32) { map_size = (((map_size >> 5) + 1) << 5); }
}
return map_size;
}
/* Create a stream file */
FILE *create_ffile(u8 *fn) {
s32 fd;
FILE *f;
fd = open(fn, O_WRONLY | O_CREAT | O_TRUNC, 0600);
if (fd < 0) { PFATAL("Unable to create '%s'", fn); }
f = fdopen(fd, "w");
if (!f) { PFATAL("fdopen() failed"); }
return f;
}
/* Create a file */
s32 create_file(u8 *fn) {
s32 fd;
fd = open(fn, O_WRONLY | O_CREAT | O_TRUNC, 0600);
if (fd < 0) { PFATAL("Unable to create '%s'", fn); }
return fd;
}