AFLplusplus/llvm_mode/MarkNodes.cc
hexcoder- ceed66930e lower requirements for lower llvm/clang versions
3.7.1 works with the exception of InsTrim, 3.8.1 and above is ok
2020-01-30 21:32:08 +01:00

470 lines
8.0 KiB
C++

#include <algorithm>
#include <map>
#include <queue>
#include <set>
#include <vector>
#include "llvm/Config/llvm-config.h"
#if LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR < 5
typedef long double max_align_t;
#endif
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/BasicBlock.h"
#if LLVM_VERSION_MAJOR > 3 || \
(LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR > 4)
#include "llvm/IR/CFG.h"
#else
#include "llvm/Support/CFG.h"
#endif
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
DenseMap<BasicBlock *, uint32_t> LMap;
std::vector<BasicBlock *> Blocks;
std::set<uint32_t> Marked, Markabove;
std::vector<std::vector<uint32_t> > Succs, Preds;
void reset() {
LMap.clear();
Blocks.clear();
Marked.clear();
Markabove.clear();
}
uint32_t start_point;
void labelEachBlock(Function *F) {
// Fake single endpoint;
LMap[NULL] = Blocks.size();
Blocks.push_back(NULL);
// Assign the unique LabelID to each block;
for (auto I = F->begin(), E = F->end(); I != E; ++I) {
BasicBlock *BB = &*I;
LMap[BB] = Blocks.size();
Blocks.push_back(BB);
}
start_point = LMap[&F->getEntryBlock()];
}
void buildCFG(Function *F) {
Succs.resize(Blocks.size());
Preds.resize(Blocks.size());
for (size_t i = 0; i < Succs.size(); i++) {
Succs[i].clear();
Preds[i].clear();
}
for (auto S = F->begin(), E = F->end(); S != E; ++S) {
BasicBlock *BB = &*S;
uint32_t MyID = LMap[BB];
for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
Succs[MyID].push_back(LMap[*I]);
}
}
}
std::vector<std::vector<uint32_t> > tSuccs;
std::vector<bool> tag, indfs;
void DFStree(size_t now_id) {
if (tag[now_id]) return;
tag[now_id] = true;
indfs[now_id] = true;
for (auto succ : tSuccs[now_id]) {
if (tag[succ] and indfs[succ]) {
Marked.insert(succ);
Markabove.insert(succ);
continue;
}
Succs[now_id].push_back(succ);
Preds[succ].push_back(now_id);
DFStree(succ);
}
indfs[now_id] = false;
}
void turnCFGintoDAG() {
tSuccs = Succs;
tag.resize(Blocks.size());
indfs.resize(Blocks.size());
for (size_t i = 0; i < Blocks.size(); ++i) {
Succs[i].clear();
tag[i] = false;
indfs[i] = false;
}
DFStree(start_point);
for (size_t i = 0; i < Blocks.size(); ++i)
if (Succs[i].empty()) {
Succs[i].push_back(0);
Preds[0].push_back(i);
}
}
uint32_t timeStamp;
namespace DominatorTree {
std::vector<std::vector<uint32_t> > cov;
std::vector<uint32_t> dfn, nfd, par, sdom, idom, mom, mn;
bool Compare(uint32_t u, uint32_t v) {
return dfn[u] < dfn[v];
}
uint32_t eval(uint32_t u) {
if (mom[u] == u) return u;
uint32_t res = eval(mom[u]);
if (Compare(sdom[mn[mom[u]]], sdom[mn[u]])) { mn[u] = mn[mom[u]]; }
return mom[u] = res;
}
void DFS(uint32_t now) {
timeStamp += 1;
dfn[now] = timeStamp;
nfd[timeStamp - 1] = now;
for (auto succ : Succs[now]) {
if (dfn[succ] == 0) {
par[succ] = now;
DFS(succ);
}
}
}
void DominatorTree() {
if (Blocks.empty()) return;
uint32_t s = start_point;
// Initialization
mn.resize(Blocks.size());
cov.resize(Blocks.size());
dfn.resize(Blocks.size());
nfd.resize(Blocks.size());
par.resize(Blocks.size());
mom.resize(Blocks.size());
sdom.resize(Blocks.size());
idom.resize(Blocks.size());
for (uint32_t i = 0; i < Blocks.size(); i++) {
dfn[i] = 0;
nfd[i] = Blocks.size();
cov[i].clear();
idom[i] = mom[i] = mn[i] = sdom[i] = i;
}
timeStamp = 0;
DFS(s);
for (uint32_t i = Blocks.size() - 1; i >= 1u; i--) {
uint32_t now = nfd[i];
if (now == Blocks.size()) { continue; }
for (uint32_t pre : Preds[now]) {
if (dfn[pre]) {
eval(pre);
if (Compare(sdom[mn[pre]], sdom[now])) { sdom[now] = sdom[mn[pre]]; }
}
}
cov[sdom[now]].push_back(now);
mom[now] = par[now];
for (uint32_t x : cov[par[now]]) {
eval(x);
if (Compare(sdom[mn[x]], par[now])) {
idom[x] = mn[x];
} else {
idom[x] = par[now];
}
}
}
for (uint32_t i = 1; i < Blocks.size(); i += 1) {
uint32_t now = nfd[i];
if (now == Blocks.size()) { continue; }
if (idom[now] != sdom[now]) idom[now] = idom[idom[now]];
}
}
} // namespace DominatorTree
std::vector<uint32_t> Visited, InStack;
std::vector<uint32_t> TopoOrder, InDeg;
std::vector<std::vector<uint32_t> > t_Succ, t_Pred;
void Go(uint32_t now, uint32_t tt) {
if (now == tt) return;
Visited[now] = InStack[now] = timeStamp;
for (uint32_t nxt : Succs[now]) {
if (Visited[nxt] == timeStamp and InStack[nxt] == timeStamp) {
Marked.insert(nxt);
}
t_Succ[now].push_back(nxt);
t_Pred[nxt].push_back(now);
InDeg[nxt] += 1;
if (Visited[nxt] == timeStamp) { continue; }
Go(nxt, tt);
}
InStack[now] = 0;
}
void TopologicalSort(uint32_t ss, uint32_t tt) {
timeStamp += 1;
Go(ss, tt);
TopoOrder.clear();
std::queue<uint32_t> wait;
wait.push(ss);
while (not wait.empty()) {
uint32_t now = wait.front();
wait.pop();
TopoOrder.push_back(now);
for (uint32_t nxt : t_Succ[now]) {
InDeg[nxt] -= 1;
if (InDeg[nxt] == 0u) { wait.push(nxt); }
}
}
}
std::vector<std::set<uint32_t> > NextMarked;
bool Indistinguish(uint32_t node1, uint32_t node2) {
if (NextMarked[node1].size() > NextMarked[node2].size()) {
uint32_t _swap = node1;
node1 = node2;
node2 = _swap;
}
for (uint32_t x : NextMarked[node1]) {
if (NextMarked[node2].find(x) != NextMarked[node2].end()) { return true; }
}
return false;
}
void MakeUniq(uint32_t now) {
bool StopFlag = false;
if (Marked.find(now) == Marked.end()) {
for (uint32_t pred1 : t_Pred[now]) {
for (uint32_t pred2 : t_Pred[now]) {
if (pred1 == pred2) continue;
if (Indistinguish(pred1, pred2)) {
Marked.insert(now);
StopFlag = true;
break;
}
}
if (StopFlag) { break; }
}
}
if (Marked.find(now) != Marked.end()) {
NextMarked[now].insert(now);
} else {
for (uint32_t pred : t_Pred[now]) {
for (uint32_t x : NextMarked[pred]) {
NextMarked[now].insert(x);
}
}
}
}
void MarkSubGraph(uint32_t ss, uint32_t tt) {
TopologicalSort(ss, tt);
if (TopoOrder.empty()) return;
for (uint32_t i : TopoOrder) {
NextMarked[i].clear();
}
NextMarked[TopoOrder[0]].insert(TopoOrder[0]);
for (uint32_t i = 1; i < TopoOrder.size(); i += 1) {
MakeUniq(TopoOrder[i]);
}
}
void MarkVertice() {
uint32_t s = start_point;
InDeg.resize(Blocks.size());
Visited.resize(Blocks.size());
InStack.resize(Blocks.size());
t_Succ.resize(Blocks.size());
t_Pred.resize(Blocks.size());
NextMarked.resize(Blocks.size());
for (uint32_t i = 0; i < Blocks.size(); i += 1) {
Visited[i] = InStack[i] = InDeg[i] = 0;
t_Succ[i].clear();
t_Pred[i].clear();
}
timeStamp = 0;
uint32_t t = 0;
while (s != t) {
MarkSubGraph(DominatorTree::idom[t], t);
t = DominatorTree::idom[t];
}
}
// return {marked nodes}
std::pair<std::vector<BasicBlock *>, std::vector<BasicBlock *> > markNodes(
Function *F) {
assert(F->size() > 0 && "Function can not be empty");
reset();
labelEachBlock(F);
buildCFG(F);
turnCFGintoDAG();
DominatorTree::DominatorTree();
MarkVertice();
std::vector<BasicBlock *> Result, ResultAbove;
for (uint32_t x : Markabove) {
auto it = Marked.find(x);
if (it != Marked.end()) Marked.erase(it);
if (x) ResultAbove.push_back(Blocks[x]);
}
for (uint32_t x : Marked) {
if (x == 0) {
continue;
} else {
Result.push_back(Blocks[x]);
}
}
return {Result, ResultAbove};
}