AFLplusplus/unicorn_mode/patches/afl-unicorn-tcg-runtime-inl.h
2019-11-04 15:46:49 +01:00

175 lines
4.5 KiB
C

/*
american fuzzy lop++ - unicorn instrumentation
----------------------------------------------
Originally written by Andrew Griffiths <agriffiths@google.com> and
Michal Zalewski
Adapted for afl-unicorn by Dominik Maier <mail@dmnk.co>
CompareCoverage and NeverZero counters by Andrea Fioraldi
<andreafioraldi@gmail.com>
Copyright 2015, 2016, 2017 Google Inc. All rights reserved.
Copyright 2019 AFLplusplus Project. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0
This code is a shim patched into the separately-distributed source
code of Unicorn 1.0.1. It leverages the built-in QEMU tracing functionality
to implement AFL-style instrumentation and to take care of the remaining
parts of the AFL fork server logic.
The resulting libunicorn binary is essentially a standalone instrumentation
tool; for an example of how to leverage it for other purposes, you can
have a look at afl-showmap.c.
*/
#include "uc_priv.h"
#include "afl-unicorn-common.h"
void HELPER(afl_compcov_log_16)(void* uc_ptr, uint64_t cur_loc, uint64_t arg1,
uint64_t arg2) {
u8* afl_area_ptr = ((struct uc_struct*)uc_ptr)->afl_area_ptr;
if ((arg1 & 0xff) == (arg2 & 0xff)) { INC_AFL_AREA(cur_loc); }
}
void HELPER(afl_compcov_log_32)(void* uc_ptr, uint64_t cur_loc, uint64_t arg1,
uint64_t arg2) {
u8* afl_area_ptr = ((struct uc_struct*)uc_ptr)->afl_area_ptr;
if ((arg1 & 0xff) == (arg2 & 0xff)) {
INC_AFL_AREA(cur_loc);
if ((arg1 & 0xffff) == (arg2 & 0xffff)) {
INC_AFL_AREA(cur_loc + 1);
if ((arg1 & 0xffffff) == (arg2 & 0xffffff)) { INC_AFL_AREA(cur_loc + 2); }
}
}
}
void HELPER(afl_compcov_log_64)(void* uc_ptr, uint64_t cur_loc, uint64_t arg1,
uint64_t arg2) {
u8* afl_area_ptr = ((struct uc_struct*)uc_ptr)->afl_area_ptr;
if ((arg1 & 0xff) == (arg2 & 0xff)) {
INC_AFL_AREA(cur_loc);
if ((arg1 & 0xffff) == (arg2 & 0xffff)) {
INC_AFL_AREA(cur_loc + 1);
if ((arg1 & 0xffffff) == (arg2 & 0xffffff)) {
INC_AFL_AREA(cur_loc + 2);
if ((arg1 & 0xffffffff) == (arg2 & 0xffffffff)) {
INC_AFL_AREA(cur_loc + 3);
if ((arg1 & 0xffffffffff) == (arg2 & 0xffffffffff)) {
INC_AFL_AREA(cur_loc + 4);
if ((arg1 & 0xffffffffffff) == (arg2 & 0xffffffffffff)) {
INC_AFL_AREA(cur_loc + 5);
if ((arg1 & 0xffffffffffffff) == (arg2 & 0xffffffffffffff)) {
INC_AFL_AREA(cur_loc + 6);
}
}
}
}
}
}
}
}
/* // Little endian CompCov
void HELPER(afl_compcov_log_16)(void* uc_ptr, uint64_t cur_loc, uint64_t arg1,
uint64_t arg2) {
u8* afl_area_ptr = ((struct uc_struct*)uc_ptr)->afl_area_ptr;
if ((arg1 & 0xff00) == (arg2 & 0xff00)) { INC_AFL_AREA(cur_loc); }
}
void HELPER(afl_compcov_log_32)(void* uc_ptr, uint64_t cur_loc, uint64_t arg1,
uint64_t arg2) {
u8* afl_area_ptr = ((struct uc_struct*)uc_ptr)->afl_area_ptr;
if ((arg1 & 0xff000000) == (arg2 & 0xff000000)) {
INC_AFL_AREA(cur_loc + 2);
if ((arg1 & 0xff0000) == (arg2 & 0xff0000)) {
INC_AFL_AREA(cur_loc + 1);
if ((arg1 & 0xff00) == (arg2 & 0xff00)) { INC_AFL_AREA(cur_loc); }
}
}
}
void HELPER(afl_compcov_log_64)(void* uc_ptr, uint64_t cur_loc, uint64_t arg1,
uint64_t arg2) {
u8* afl_area_ptr = ((struct uc_struct*)uc_ptr)->afl_area_ptr;
if ((arg1 & 0xff00000000000000) == (arg2 & 0xff00000000000000)) {
INC_AFL_AREA(cur_loc + 6);
if ((arg1 & 0xff000000000000) == (arg2 & 0xff000000000000)) {
INC_AFL_AREA(cur_loc + 5);
if ((arg1 & 0xff0000000000) == (arg2 & 0xff0000000000)) {
INC_AFL_AREA(cur_loc + 4);
if ((arg1 & 0xff00000000) == (arg2 & 0xff00000000)) {
INC_AFL_AREA(cur_loc + 3);
if ((arg1 & 0xff000000) == (arg2 & 0xff000000)) {
INC_AFL_AREA(cur_loc + 2);
if ((arg1 & 0xff0000) == (arg2 & 0xff0000)) {
INC_AFL_AREA(cur_loc + 1);
if ((arg1 & 0xff00) == (arg2 & 0xff00)) { INC_AFL_AREA(cur_loc); }
}
}
}
}
}
}
}
*/