AFLplusplus/qemu_mode/patches/afl-qemu-cpu-translate-inl.h
2019-07-19 00:55:41 +02:00

126 lines
3.7 KiB
C

/*
american fuzzy lop - high-performance binary-only instrumentation
-----------------------------------------------------------------
Written by Andrew Griffiths <agriffiths@google.com> and
Michal Zalewski <lcamtuf@google.com>
Idea & design very much by Andrew Griffiths.
TCG instrumentation and block chaining support by Andrea Biondo
<andrea.biondo965@gmail.com>
QEMU 3.1.0 port, TCG thread-safety and CompareCoverage by Andrea Fioraldi
<andreafioraldi@gmail.com>
Copyright 2015, 2016, 2017 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0
This code is a shim patched into the separately-distributed source
code of QEMU 3.1.0. It leverages the built-in QEMU tracing functionality
to implement AFL-style instrumentation and to take care of the remaining
parts of the AFL fork server logic.
The resulting QEMU binary is essentially a standalone instrumentation
tool; for an example of how to leverage it for other purposes, you can
have a look at afl-showmap.c.
*/
#include "../../config.h"
#include "tcg.h"
#include "tcg-op.h"
/* Declared in afl-qemu-cpu-inl.h */
extern unsigned char *afl_area_ptr;
extern unsigned int afl_inst_rms;
extern abi_ulong afl_start_code, afl_end_code;
extern u8 afl_enable_compcov;
void tcg_gen_afl_compcov_log_call(void *func, target_ulong cur_loc,
TCGv_i64 arg1, TCGv_i64 arg2);
static void afl_compcov_log_16(target_ulong cur_loc, target_ulong arg1,
target_ulong arg2) {
if ((arg1 & 0xff) == (arg2 & 0xff)) {
afl_area_ptr[cur_loc]++;
}
}
static void afl_compcov_log_32(target_ulong cur_loc, target_ulong arg1,
target_ulong arg2) {
if ((arg1 & 0xff) == (arg2 & 0xff)) {
afl_area_ptr[cur_loc]++;
if ((arg1 & 0xffff) == (arg2 & 0xffff)) {
afl_area_ptr[cur_loc +1]++;
if ((arg1 & 0xffffff) == (arg2 & 0xffffff)) {
afl_area_ptr[cur_loc +2]++;
}
}
}
}
static void afl_compcov_log_64(target_ulong cur_loc, target_ulong arg1,
target_ulong arg2) {
if ((arg1 & 0xff) == (arg2 & 0xff)) {
afl_area_ptr[cur_loc]++;
if ((arg1 & 0xffff) == (arg2 & 0xffff)) {
afl_area_ptr[cur_loc +1]++;
if ((arg1 & 0xffffff) == (arg2 & 0xffffff)) {
afl_area_ptr[cur_loc +2]++;
if ((arg1 & 0xffffffff) == (arg2 & 0xffffffff)) {
afl_area_ptr[cur_loc +3]++;
if ((arg1 & 0xffffffff) == (arg2 & 0xffffffffff)) {
afl_area_ptr[cur_loc +4]++;
if ((arg1 & 0xffffffff) == (arg2 & 0xffffffffffff)) {
afl_area_ptr[cur_loc +5]++;
if ((arg1 & 0xffffffff) == (arg2 & 0xffffffffffffff)) {
afl_area_ptr[cur_loc +6]++;
}
}
}
}
}
}
}
}
static void afl_gen_compcov(target_ulong cur_loc, TCGv_i64 arg1, TCGv_i64 arg2,
TCGMemOp ot) {
void *func;
if (!afl_enable_compcov || cur_loc > afl_end_code || cur_loc < afl_start_code)
return;
switch (ot) {
case MO_64:
func = &afl_compcov_log_64;
break;
case MO_32:
func = &afl_compcov_log_32;
break;
case MO_16:
func = &afl_compcov_log_16;
break;
default:
return;
}
cur_loc = (cur_loc >> 4) ^ (cur_loc << 8);
cur_loc &= MAP_SIZE - 1;
if (cur_loc >= afl_inst_rms) return;
tcg_gen_afl_compcov_log_call(func, cur_loc, arg1, arg2);
}