mirror of
https://github.com/AFLplusplus/AFLplusplus.git
synced 2025-06-10 01:01:33 +00:00
4433 lines
106 KiB
C
4433 lines
106 KiB
C
/*
|
|
american fuzzy lop++ - fuzze_one routines in different flavours
|
|
---------------------------------------------------------------
|
|
|
|
Originally written by Michal Zalewski <lcamtuf@google.com>
|
|
|
|
Now maintained by by Marc Heuse <mh@mh-sec.de>,
|
|
Heiko Eißfeldt <heiko.eissfeldt@hexco.de> and
|
|
Andrea Fioraldi <andreafioraldi@gmail.com>
|
|
|
|
Copyright 2016, 2017 Google Inc. All rights reserved.
|
|
Copyright 2019 AFLplusplus Project. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at:
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
This is the real deal: the program takes an instrumented binary and
|
|
attempts a variety of basic fuzzing tricks, paying close attention to
|
|
how they affect the execution path.
|
|
|
|
*/
|
|
|
|
#include "afl-fuzz.h"
|
|
#include "radamsa.h"
|
|
|
|
#define RADAMSA_CHANCE 24
|
|
|
|
/* MOpt */
|
|
|
|
int select_algorithm(void) {
|
|
|
|
int i_puppet, j_puppet;
|
|
|
|
double sele = ((double)(UR(10000)) * 0.0001);
|
|
j_puppet = 0;
|
|
for (i_puppet = 0; i_puppet < operator_num; ++i_puppet) {
|
|
|
|
if (unlikely(i_puppet == 0)) {
|
|
|
|
if (sele < probability_now[swarm_now][i_puppet]) break;
|
|
|
|
} else {
|
|
|
|
if (sele < probability_now[swarm_now][i_puppet]) {
|
|
|
|
j_puppet = 1;
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (j_puppet == 1 && sele < probability_now[swarm_now][i_puppet - 1])
|
|
FATAL("error select_algorithm");
|
|
return i_puppet;
|
|
|
|
}
|
|
|
|
/* Helper to choose random block len for block operations in fuzz_one().
|
|
Doesn't return zero, provided that max_len is > 0. */
|
|
|
|
static u32 choose_block_len(u32 limit) {
|
|
|
|
u32 min_value, max_value;
|
|
u32 rlim = MIN(queue_cycle, 3);
|
|
|
|
if (!run_over10m) rlim = 1;
|
|
|
|
switch (UR(rlim)) {
|
|
|
|
case 0:
|
|
min_value = 1;
|
|
max_value = HAVOC_BLK_SMALL;
|
|
break;
|
|
|
|
case 1:
|
|
min_value = HAVOC_BLK_SMALL;
|
|
max_value = HAVOC_BLK_MEDIUM;
|
|
break;
|
|
|
|
default:
|
|
|
|
if (UR(10)) {
|
|
|
|
min_value = HAVOC_BLK_MEDIUM;
|
|
max_value = HAVOC_BLK_LARGE;
|
|
|
|
} else {
|
|
|
|
min_value = HAVOC_BLK_LARGE;
|
|
max_value = HAVOC_BLK_XL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (min_value >= limit) min_value = 1;
|
|
|
|
return min_value + UR(MIN(max_value, limit) - min_value + 1);
|
|
|
|
}
|
|
|
|
/* Helper function to see if a particular change (xor_val = old ^ new) could
|
|
be a product of deterministic bit flips with the lengths and stepovers
|
|
attempted by afl-fuzz. This is used to avoid dupes in some of the
|
|
deterministic fuzzing operations that follow bit flips. We also
|
|
return 1 if xor_val is zero, which implies that the old and attempted new
|
|
values are identical and the exec would be a waste of time. */
|
|
|
|
static u8 could_be_bitflip(u32 xor_val) {
|
|
|
|
u32 sh = 0;
|
|
|
|
if (!xor_val) return 1;
|
|
|
|
/* Shift left until first bit set. */
|
|
|
|
while (!(xor_val & 1)) {
|
|
|
|
++sh;
|
|
xor_val >>= 1;
|
|
|
|
}
|
|
|
|
/* 1-, 2-, and 4-bit patterns are OK anywhere. */
|
|
|
|
if (xor_val == 1 || xor_val == 3 || xor_val == 15) return 1;
|
|
|
|
/* 8-, 16-, and 32-bit patterns are OK only if shift factor is
|
|
divisible by 8, since that's the stepover for these ops. */
|
|
|
|
if (sh & 7) return 0;
|
|
|
|
if (xor_val == 0xff || xor_val == 0xffff || xor_val == 0xffffffff) return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* Helper function to see if a particular value is reachable through
|
|
arithmetic operations. Used for similar purposes. */
|
|
|
|
static u8 could_be_arith(u32 old_val, u32 new_val, u8 blen) {
|
|
|
|
u32 i, ov = 0, nv = 0, diffs = 0;
|
|
|
|
if (old_val == new_val) return 1;
|
|
|
|
/* See if one-byte adjustments to any byte could produce this result. */
|
|
|
|
for (i = 0; i < blen; ++i) {
|
|
|
|
u8 a = old_val >> (8 * i), b = new_val >> (8 * i);
|
|
|
|
if (a != b) {
|
|
|
|
++diffs;
|
|
ov = a;
|
|
nv = b;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* If only one byte differs and the values are within range, return 1. */
|
|
|
|
if (diffs == 1) {
|
|
|
|
if ((u8)(ov - nv) <= ARITH_MAX || (u8)(nv - ov) <= ARITH_MAX) return 1;
|
|
|
|
}
|
|
|
|
if (blen == 1) return 0;
|
|
|
|
/* See if two-byte adjustments to any byte would produce this result. */
|
|
|
|
diffs = 0;
|
|
|
|
for (i = 0; i < blen / 2; ++i) {
|
|
|
|
u16 a = old_val >> (16 * i), b = new_val >> (16 * i);
|
|
|
|
if (a != b) {
|
|
|
|
++diffs;
|
|
ov = a;
|
|
nv = b;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* If only one word differs and the values are within range, return 1. */
|
|
|
|
if (diffs == 1) {
|
|
|
|
if ((u16)(ov - nv) <= ARITH_MAX || (u16)(nv - ov) <= ARITH_MAX) return 1;
|
|
|
|
ov = SWAP16(ov);
|
|
nv = SWAP16(nv);
|
|
|
|
if ((u16)(ov - nv) <= ARITH_MAX || (u16)(nv - ov) <= ARITH_MAX) return 1;
|
|
|
|
}
|
|
|
|
/* Finally, let's do the same thing for dwords. */
|
|
|
|
if (blen == 4) {
|
|
|
|
if ((u32)(old_val - new_val) <= ARITH_MAX ||
|
|
(u32)(new_val - old_val) <= ARITH_MAX)
|
|
return 1;
|
|
|
|
new_val = SWAP32(new_val);
|
|
old_val = SWAP32(old_val);
|
|
|
|
if ((u32)(old_val - new_val) <= ARITH_MAX ||
|
|
(u32)(new_val - old_val) <= ARITH_MAX)
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* Last but not least, a similar helper to see if insertion of an
|
|
interesting integer is redundant given the insertions done for
|
|
shorter blen. The last param (check_le) is set if the caller
|
|
already executed LE insertion for current blen and wants to see
|
|
if BE variant passed in new_val is unique. */
|
|
|
|
static u8 could_be_interest(u32 old_val, u32 new_val, u8 blen, u8 check_le) {
|
|
|
|
u32 i, j;
|
|
|
|
if (old_val == new_val) return 1;
|
|
|
|
/* See if one-byte insertions from interesting_8 over old_val could
|
|
produce new_val. */
|
|
|
|
for (i = 0; i < blen; ++i) {
|
|
|
|
for (j = 0; j < sizeof(interesting_8); ++j) {
|
|
|
|
u32 tval =
|
|
(old_val & ~(0xff << (i * 8))) | (((u8)interesting_8[j]) << (i * 8));
|
|
|
|
if (new_val == tval) return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Bail out unless we're also asked to examine two-byte LE insertions
|
|
as a preparation for BE attempts. */
|
|
|
|
if (blen == 2 && !check_le) return 0;
|
|
|
|
/* See if two-byte insertions over old_val could give us new_val. */
|
|
|
|
for (i = 0; i < blen - 1; ++i) {
|
|
|
|
for (j = 0; j < sizeof(interesting_16) / 2; ++j) {
|
|
|
|
u32 tval = (old_val & ~(0xffff << (i * 8))) |
|
|
(((u16)interesting_16[j]) << (i * 8));
|
|
|
|
if (new_val == tval) return 1;
|
|
|
|
/* Continue here only if blen > 2. */
|
|
|
|
if (blen > 2) {
|
|
|
|
tval = (old_val & ~(0xffff << (i * 8))) |
|
|
(SWAP16(interesting_16[j]) << (i * 8));
|
|
|
|
if (new_val == tval) return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (blen == 4 && check_le) {
|
|
|
|
/* See if four-byte insertions could produce the same result
|
|
(LE only). */
|
|
|
|
for (j = 0; j < sizeof(interesting_32) / 4; ++j)
|
|
if (new_val == (u32)interesting_32[j]) return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#ifndef IGNORE_FINDS
|
|
|
|
/* Helper function to compare buffers; returns first and last differing offset.
|
|
We use this to find reasonable locations for splicing two files. */
|
|
|
|
static void locate_diffs(u8* ptr1, u8* ptr2, u32 len, s32* first, s32* last) {
|
|
|
|
s32 f_loc = -1;
|
|
s32 l_loc = -1;
|
|
u32 pos;
|
|
|
|
for (pos = 0; pos < len; ++pos) {
|
|
|
|
if (*(ptr1++) != *(ptr2++)) {
|
|
|
|
if (f_loc == -1) f_loc = pos;
|
|
l_loc = pos;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*first = f_loc;
|
|
*last = l_loc;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
#endif /* !IGNORE_FINDS */
|
|
|
|
/* Take the current entry from the queue, fuzz it for a while. This
|
|
function is a tad too long... returns 0 if fuzzed successfully, 1 if
|
|
skipped or bailed out. */
|
|
|
|
u8 fuzz_one_original(char** argv) {
|
|
|
|
s32 len, fd, temp_len, i, j;
|
|
u8 *in_buf, *out_buf, *orig_in, *ex_tmp, *eff_map = 0;
|
|
u64 havoc_queued = 0, orig_hit_cnt, new_hit_cnt;
|
|
u32 splice_cycle = 0, perf_score = 100, orig_perf, prev_cksum, eff_cnt = 1;
|
|
|
|
u8 ret_val = 1, doing_det = 0;
|
|
|
|
u8 a_collect[MAX_AUTO_EXTRA];
|
|
u32 a_len = 0;
|
|
|
|
#ifdef IGNORE_FINDS
|
|
|
|
/* In IGNORE_FINDS mode, skip any entries that weren't in the
|
|
initial data set. */
|
|
|
|
if (queue_cur->depth > 1) return 1;
|
|
|
|
#else
|
|
|
|
if (pending_favored) {
|
|
|
|
/* If we have any favored, non-fuzzed new arrivals in the queue,
|
|
possibly skip to them at the expense of already-fuzzed or non-favored
|
|
cases. */
|
|
|
|
if (((queue_cur->was_fuzzed > 0 || queue_cur->fuzz_level > 0) ||
|
|
!queue_cur->favored) &&
|
|
UR(100) < SKIP_TO_NEW_PROB)
|
|
return 1;
|
|
|
|
} else if (!dumb_mode && !queue_cur->favored && queued_paths > 10) {
|
|
|
|
/* Otherwise, still possibly skip non-favored cases, albeit less often.
|
|
The odds of skipping stuff are higher for already-fuzzed inputs and
|
|
lower for never-fuzzed entries. */
|
|
|
|
if (queue_cycle > 1 &&
|
|
(queue_cur->fuzz_level == 0 || queue_cur->was_fuzzed)) {
|
|
|
|
if (UR(100) < SKIP_NFAV_NEW_PROB) return 1;
|
|
|
|
} else {
|
|
|
|
if (UR(100) < SKIP_NFAV_OLD_PROB) return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* ^IGNORE_FINDS */
|
|
|
|
if (not_on_tty) {
|
|
|
|
ACTF("Fuzzing test case #%u (%u total, %llu uniq crashes found)...",
|
|
current_entry, queued_paths, unique_crashes);
|
|
fflush(stdout);
|
|
|
|
}
|
|
|
|
/* Map the test case into memory. */
|
|
|
|
fd = open(queue_cur->fname, O_RDONLY);
|
|
|
|
if (fd < 0) PFATAL("Unable to open '%s'", queue_cur->fname);
|
|
|
|
len = queue_cur->len;
|
|
|
|
orig_in = in_buf = mmap(0, len, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
|
|
|
|
if (orig_in == MAP_FAILED)
|
|
PFATAL("Unable to mmap '%s' with len %d", queue_cur->fname, len);
|
|
|
|
close(fd);
|
|
|
|
/* We could mmap() out_buf as MAP_PRIVATE, but we end up clobbering every
|
|
single byte anyway, so it wouldn't give us any performance or memory usage
|
|
benefits. */
|
|
|
|
out_buf = ck_alloc_nozero(len);
|
|
|
|
subseq_tmouts = 0;
|
|
|
|
cur_depth = queue_cur->depth;
|
|
|
|
/*******************************************
|
|
* CALIBRATION (only if failed earlier on) *
|
|
*******************************************/
|
|
|
|
if (queue_cur->cal_failed) {
|
|
|
|
u8 res = FAULT_TMOUT;
|
|
|
|
if (queue_cur->cal_failed < CAL_CHANCES) {
|
|
|
|
res = calibrate_case(argv, queue_cur, in_buf, queue_cycle - 1, 0);
|
|
|
|
if (res == FAULT_ERROR) FATAL("Unable to execute target application");
|
|
|
|
}
|
|
|
|
if (stop_soon || res != crash_mode) {
|
|
|
|
++cur_skipped_paths;
|
|
goto abandon_entry;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/************
|
|
* TRIMMING *
|
|
************/
|
|
|
|
if (!dumb_mode && !queue_cur->trim_done && !custom_mutator) {
|
|
|
|
u8 res = trim_case(argv, queue_cur, in_buf);
|
|
|
|
if (res == FAULT_ERROR) FATAL("Unable to execute target application");
|
|
|
|
if (stop_soon) {
|
|
|
|
++cur_skipped_paths;
|
|
goto abandon_entry;
|
|
|
|
}
|
|
|
|
/* Don't retry trimming, even if it failed. */
|
|
|
|
queue_cur->trim_done = 1;
|
|
|
|
len = queue_cur->len;
|
|
|
|
}
|
|
|
|
memcpy(out_buf, in_buf, len);
|
|
|
|
/*********************
|
|
* PERFORMANCE SCORE *
|
|
*********************/
|
|
|
|
orig_perf = perf_score = calculate_score(queue_cur);
|
|
|
|
if (perf_score == 0) goto abandon_entry;
|
|
|
|
if (use_radamsa > 1)
|
|
goto radamsa_stage;
|
|
|
|
if (custom_mutator) {
|
|
|
|
stage_short = "custom";
|
|
stage_name = "custom mutator";
|
|
stage_max = len << 3;
|
|
stage_val_type = STAGE_VAL_NONE;
|
|
|
|
const u32 max_seed_size = 4096 * 4096;
|
|
u8* mutated_buf = ck_alloc(max_seed_size);
|
|
|
|
orig_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) {
|
|
|
|
size_t orig_size = (size_t)len;
|
|
size_t mutated_size = custom_mutator(in_buf, orig_size, mutated_buf,
|
|
max_seed_size, UR(UINT32_MAX));
|
|
if (mutated_size > 0) {
|
|
|
|
out_buf = ck_realloc(out_buf, mutated_size);
|
|
memcpy(out_buf, mutated_buf, mutated_size);
|
|
if (common_fuzz_stuff(argv, out_buf, (u32)mutated_size)) {
|
|
|
|
goto abandon_entry;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ck_free(mutated_buf);
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_CUSTOM_MUTATOR] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_CUSTOM_MUTATOR] += stage_max;
|
|
|
|
if (custom_only) {
|
|
|
|
/* Skip other stages */
|
|
ret_val = 0;
|
|
goto abandon_entry;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Skip right away if -d is given, if it has not been chosen sufficiently
|
|
often to warrant the expensive deterministic stage (fuzz_level), or
|
|
if it has gone through deterministic testing in earlier, resumed runs
|
|
(passed_det). */
|
|
|
|
if (skip_deterministic ||
|
|
((!queue_cur->passed_det) &&
|
|
perf_score < (queue_cur->depth * 30 <= havoc_max_mult * 100
|
|
? queue_cur->depth * 30
|
|
: havoc_max_mult * 100)) ||
|
|
queue_cur->passed_det) {
|
|
if (use_radamsa > 1)
|
|
goto radamsa_stage;
|
|
else
|
|
#ifdef USE_PYTHON
|
|
goto python_stage;
|
|
#else
|
|
goto havoc_stage;
|
|
#endif
|
|
}
|
|
|
|
/* Skip deterministic fuzzing if exec path checksum puts this out of scope
|
|
for this master instance. */
|
|
|
|
if (master_max && (queue_cur->exec_cksum % master_max) != master_id - 1) {
|
|
if (use_radamsa > 1)
|
|
goto radamsa_stage;
|
|
else
|
|
#ifdef USE_PYTHON
|
|
goto python_stage;
|
|
#else
|
|
goto havoc_stage;
|
|
#endif
|
|
}
|
|
|
|
doing_det = 1;
|
|
|
|
/*********************************************
|
|
* SIMPLE BITFLIP (+dictionary construction) *
|
|
*********************************************/
|
|
|
|
#define FLIP_BIT(_ar, _b) \
|
|
do { \
|
|
\
|
|
u8* _arf = (u8*)(_ar); \
|
|
u32 _bf = (_b); \
|
|
_arf[(_bf) >> 3] ^= (128 >> ((_bf)&7)); \
|
|
\
|
|
} while (0)
|
|
|
|
/* Single walking bit. */
|
|
|
|
stage_short = "flip1";
|
|
stage_max = len << 3;
|
|
stage_name = "bitflip 1/1";
|
|
|
|
stage_val_type = STAGE_VAL_NONE;
|
|
|
|
orig_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
prev_cksum = queue_cur->exec_cksum;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) {
|
|
|
|
stage_cur_byte = stage_cur >> 3;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
|
|
/* While flipping the least significant bit in every byte, pull of an extra
|
|
trick to detect possible syntax tokens. In essence, the idea is that if
|
|
you have a binary blob like this:
|
|
|
|
xxxxxxxxIHDRxxxxxxxx
|
|
|
|
...and changing the leading and trailing bytes causes variable or no
|
|
changes in program flow, but touching any character in the "IHDR" string
|
|
always produces the same, distinctive path, it's highly likely that
|
|
"IHDR" is an atomically-checked magic value of special significance to
|
|
the fuzzed format.
|
|
|
|
We do this here, rather than as a separate stage, because it's a nice
|
|
way to keep the operation approximately "free" (i.e., no extra execs).
|
|
|
|
Empirically, performing the check when flipping the least significant bit
|
|
is advantageous, compared to doing it at the time of more disruptive
|
|
changes, where the program flow may be affected in more violent ways.
|
|
|
|
The caveat is that we won't generate dictionaries in the -d mode or -S
|
|
mode - but that's probably a fair trade-off.
|
|
|
|
This won't work particularly well with paths that exhibit variable
|
|
behavior, but fails gracefully, so we'll carry out the checks anyway.
|
|
|
|
*/
|
|
|
|
if (!dumb_mode && (stage_cur & 7) == 7) {
|
|
|
|
u32 cksum = hash32(trace_bits, MAP_SIZE, HASH_CONST);
|
|
|
|
if (stage_cur == stage_max - 1 && cksum == prev_cksum) {
|
|
|
|
/* If at end of file and we are still collecting a string, grab the
|
|
final character and force output. */
|
|
|
|
if (a_len < MAX_AUTO_EXTRA) a_collect[a_len] = out_buf[stage_cur >> 3];
|
|
++a_len;
|
|
|
|
if (a_len >= MIN_AUTO_EXTRA && a_len <= MAX_AUTO_EXTRA)
|
|
maybe_add_auto(a_collect, a_len);
|
|
|
|
} else if (cksum != prev_cksum) {
|
|
|
|
/* Otherwise, if the checksum has changed, see if we have something
|
|
worthwhile queued up, and collect that if the answer is yes. */
|
|
|
|
if (a_len >= MIN_AUTO_EXTRA && a_len <= MAX_AUTO_EXTRA)
|
|
maybe_add_auto(a_collect, a_len);
|
|
|
|
a_len = 0;
|
|
prev_cksum = cksum;
|
|
|
|
}
|
|
|
|
/* Continue collecting string, but only if the bit flip actually made
|
|
any difference - we don't want no-op tokens. */
|
|
|
|
if (cksum != queue_cur->exec_cksum) {
|
|
|
|
if (a_len < MAX_AUTO_EXTRA) a_collect[a_len] = out_buf[stage_cur >> 3];
|
|
++a_len;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP1] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP1] += stage_max;
|
|
|
|
/* Two walking bits. */
|
|
|
|
stage_name = "bitflip 2/1";
|
|
stage_short = "flip2";
|
|
stage_max = (len << 3) - 1;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) {
|
|
|
|
stage_cur_byte = stage_cur >> 3;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
FLIP_BIT(out_buf, stage_cur + 1);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
FLIP_BIT(out_buf, stage_cur + 1);
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP2] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP2] += stage_max;
|
|
|
|
/* Four walking bits. */
|
|
|
|
stage_name = "bitflip 4/1";
|
|
stage_short = "flip4";
|
|
stage_max = (len << 3) - 3;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) {
|
|
|
|
stage_cur_byte = stage_cur >> 3;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
FLIP_BIT(out_buf, stage_cur + 1);
|
|
FLIP_BIT(out_buf, stage_cur + 2);
|
|
FLIP_BIT(out_buf, stage_cur + 3);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
FLIP_BIT(out_buf, stage_cur + 1);
|
|
FLIP_BIT(out_buf, stage_cur + 2);
|
|
FLIP_BIT(out_buf, stage_cur + 3);
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP4] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP4] += stage_max;
|
|
|
|
/* Effector map setup. These macros calculate:
|
|
|
|
EFF_APOS - position of a particular file offset in the map.
|
|
EFF_ALEN - length of a map with a particular number of bytes.
|
|
EFF_SPAN_ALEN - map span for a sequence of bytes.
|
|
|
|
*/
|
|
|
|
#define EFF_APOS(_p) ((_p) >> EFF_MAP_SCALE2)
|
|
#define EFF_REM(_x) ((_x) & ((1 << EFF_MAP_SCALE2) - 1))
|
|
#define EFF_ALEN(_l) (EFF_APOS(_l) + !!EFF_REM(_l))
|
|
#define EFF_SPAN_ALEN(_p, _l) (EFF_APOS((_p) + (_l)-1) - EFF_APOS(_p) + 1)
|
|
|
|
/* Initialize effector map for the next step (see comments below). Always
|
|
flag first and last byte as doing something. */
|
|
|
|
eff_map = ck_alloc(EFF_ALEN(len));
|
|
eff_map[0] = 1;
|
|
|
|
if (EFF_APOS(len - 1) != 0) {
|
|
|
|
eff_map[EFF_APOS(len - 1)] = 1;
|
|
++eff_cnt;
|
|
|
|
}
|
|
|
|
/* Walking byte. */
|
|
|
|
stage_name = "bitflip 8/8";
|
|
stage_short = "flip8";
|
|
stage_max = len;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) {
|
|
|
|
stage_cur_byte = stage_cur;
|
|
|
|
out_buf[stage_cur] ^= 0xFF;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
/* We also use this stage to pull off a simple trick: we identify
|
|
bytes that seem to have no effect on the current execution path
|
|
even when fully flipped - and we skip them during more expensive
|
|
deterministic stages, such as arithmetics or known ints. */
|
|
|
|
if (!eff_map[EFF_APOS(stage_cur)]) {
|
|
|
|
u32 cksum;
|
|
|
|
/* If in dumb mode or if the file is very short, just flag everything
|
|
without wasting time on checksums. */
|
|
|
|
if (!dumb_mode && len >= EFF_MIN_LEN)
|
|
cksum = hash32(trace_bits, MAP_SIZE, HASH_CONST);
|
|
else
|
|
cksum = ~queue_cur->exec_cksum;
|
|
|
|
if (cksum != queue_cur->exec_cksum) {
|
|
|
|
eff_map[EFF_APOS(stage_cur)] = 1;
|
|
++eff_cnt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out_buf[stage_cur] ^= 0xFF;
|
|
|
|
}
|
|
|
|
/* If the effector map is more than EFF_MAX_PERC dense, just flag the
|
|
whole thing as worth fuzzing, since we wouldn't be saving much time
|
|
anyway. */
|
|
|
|
if (eff_cnt != EFF_ALEN(len) &&
|
|
eff_cnt * 100 / EFF_ALEN(len) > EFF_MAX_PERC) {
|
|
|
|
memset(eff_map, 1, EFF_ALEN(len));
|
|
|
|
blocks_eff_select += EFF_ALEN(len);
|
|
|
|
} else {
|
|
|
|
blocks_eff_select += eff_cnt;
|
|
|
|
}
|
|
|
|
blocks_eff_total += EFF_ALEN(len);
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP8] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP8] += stage_max;
|
|
|
|
/* Two walking bytes. */
|
|
|
|
if (len < 2) goto skip_bitflip;
|
|
|
|
stage_name = "bitflip 16/8";
|
|
stage_short = "flip16";
|
|
stage_cur = 0;
|
|
stage_max = len - 1;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 1; ++i) {
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)]) {
|
|
|
|
--stage_max;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
*(u16*)(out_buf + i) ^= 0xFFFF;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
*(u16*)(out_buf + i) ^= 0xFFFF;
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP16] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP16] += stage_max;
|
|
|
|
if (len < 4) goto skip_bitflip;
|
|
|
|
/* Four walking bytes. */
|
|
|
|
stage_name = "bitflip 32/8";
|
|
stage_short = "flip32";
|
|
stage_cur = 0;
|
|
stage_max = len - 3;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 3; ++i) {
|
|
|
|
/* Let's consult the effector map... */
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)] &&
|
|
!eff_map[EFF_APOS(i + 2)] && !eff_map[EFF_APOS(i + 3)]) {
|
|
|
|
--stage_max;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
*(u32*)(out_buf + i) ^= 0xFFFFFFFF;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
*(u32*)(out_buf + i) ^= 0xFFFFFFFF;
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP32] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP32] += stage_max;
|
|
|
|
skip_bitflip:
|
|
|
|
if (no_arith) goto skip_arith;
|
|
|
|
/**********************
|
|
* ARITHMETIC INC/DEC *
|
|
**********************/
|
|
|
|
/* 8-bit arithmetics. */
|
|
|
|
stage_name = "arith 8/8";
|
|
stage_short = "arith8";
|
|
stage_cur = 0;
|
|
stage_max = 2 * len * ARITH_MAX;
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
|
|
u8 orig = out_buf[i];
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)]) {
|
|
|
|
stage_max -= 2 * ARITH_MAX;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 1; j <= ARITH_MAX; ++j) {
|
|
|
|
u8 r = orig ^ (orig + j);
|
|
|
|
/* Do arithmetic operations only if the result couldn't be a product
|
|
of a bitflip. */
|
|
|
|
if (!could_be_bitflip(r)) {
|
|
|
|
stage_cur_val = j;
|
|
out_buf[i] = orig + j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
r = orig ^ (orig - j);
|
|
|
|
if (!could_be_bitflip(r)) {
|
|
|
|
stage_cur_val = -j;
|
|
out_buf[i] = orig - j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
out_buf[i] = orig;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_ARITH8] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_ARITH8] += stage_max;
|
|
|
|
/* 16-bit arithmetics, both endians. */
|
|
|
|
if (len < 2) goto skip_arith;
|
|
|
|
stage_name = "arith 16/8";
|
|
stage_short = "arith16";
|
|
stage_cur = 0;
|
|
stage_max = 4 * (len - 1) * ARITH_MAX;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 1; ++i) {
|
|
|
|
u16 orig = *(u16*)(out_buf + i);
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)]) {
|
|
|
|
stage_max -= 4 * ARITH_MAX;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 1; j <= ARITH_MAX; ++j) {
|
|
|
|
u16 r1 = orig ^ (orig + j), r2 = orig ^ (orig - j),
|
|
r3 = orig ^ SWAP16(SWAP16(orig) + j),
|
|
r4 = orig ^ SWAP16(SWAP16(orig) - j);
|
|
|
|
/* Try little endian addition and subtraction first. Do it only
|
|
if the operation would affect more than one byte (hence the
|
|
& 0xff overflow checks) and if it couldn't be a product of
|
|
a bitflip. */
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
if ((orig & 0xff) + j > 0xff && !could_be_bitflip(r1)) {
|
|
|
|
stage_cur_val = j;
|
|
*(u16*)(out_buf + i) = orig + j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
if ((orig & 0xff) < j && !could_be_bitflip(r2)) {
|
|
|
|
stage_cur_val = -j;
|
|
*(u16*)(out_buf + i) = orig - j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
/* Big endian comes next. Same deal. */
|
|
|
|
stage_val_type = STAGE_VAL_BE;
|
|
|
|
if ((orig >> 8) + j > 0xff && !could_be_bitflip(r3)) {
|
|
|
|
stage_cur_val = j;
|
|
*(u16*)(out_buf + i) = SWAP16(SWAP16(orig) + j);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
if ((orig >> 8) < j && !could_be_bitflip(r4)) {
|
|
|
|
stage_cur_val = -j;
|
|
*(u16*)(out_buf + i) = SWAP16(SWAP16(orig) - j);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
*(u16*)(out_buf + i) = orig;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_ARITH16] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_ARITH16] += stage_max;
|
|
|
|
/* 32-bit arithmetics, both endians. */
|
|
|
|
if (len < 4) goto skip_arith;
|
|
|
|
stage_name = "arith 32/8";
|
|
stage_short = "arith32";
|
|
stage_cur = 0;
|
|
stage_max = 4 * (len - 3) * ARITH_MAX;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 3; ++i) {
|
|
|
|
u32 orig = *(u32*)(out_buf + i);
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)] &&
|
|
!eff_map[EFF_APOS(i + 2)] && !eff_map[EFF_APOS(i + 3)]) {
|
|
|
|
stage_max -= 4 * ARITH_MAX;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 1; j <= ARITH_MAX; ++j) {
|
|
|
|
u32 r1 = orig ^ (orig + j), r2 = orig ^ (orig - j),
|
|
r3 = orig ^ SWAP32(SWAP32(orig) + j),
|
|
r4 = orig ^ SWAP32(SWAP32(orig) - j);
|
|
|
|
/* Little endian first. Same deal as with 16-bit: we only want to
|
|
try if the operation would have effect on more than two bytes. */
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
if ((orig & 0xffff) + j > 0xffff && !could_be_bitflip(r1)) {
|
|
|
|
stage_cur_val = j;
|
|
*(u32*)(out_buf + i) = orig + j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
if ((orig & 0xffff) < j && !could_be_bitflip(r2)) {
|
|
|
|
stage_cur_val = -j;
|
|
*(u32*)(out_buf + i) = orig - j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
/* Big endian next. */
|
|
|
|
stage_val_type = STAGE_VAL_BE;
|
|
|
|
if ((SWAP32(orig) & 0xffff) + j > 0xffff && !could_be_bitflip(r3)) {
|
|
|
|
stage_cur_val = j;
|
|
*(u32*)(out_buf + i) = SWAP32(SWAP32(orig) + j);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
if ((SWAP32(orig) & 0xffff) < j && !could_be_bitflip(r4)) {
|
|
|
|
stage_cur_val = -j;
|
|
*(u32*)(out_buf + i) = SWAP32(SWAP32(orig) - j);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
*(u32*)(out_buf + i) = orig;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_ARITH32] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_ARITH32] += stage_max;
|
|
|
|
skip_arith:
|
|
|
|
/**********************
|
|
* INTERESTING VALUES *
|
|
**********************/
|
|
|
|
stage_name = "interest 8/8";
|
|
stage_short = "int8";
|
|
stage_cur = 0;
|
|
stage_max = len * sizeof(interesting_8);
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
/* Setting 8-bit integers. */
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
|
|
u8 orig = out_buf[i];
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)]) {
|
|
|
|
stage_max -= sizeof(interesting_8);
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < sizeof(interesting_8); ++j) {
|
|
|
|
/* Skip if the value could be a product of bitflips or arithmetics. */
|
|
|
|
if (could_be_bitflip(orig ^ (u8)interesting_8[j]) ||
|
|
could_be_arith(orig, (u8)interesting_8[j], 1)) {
|
|
|
|
--stage_max;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_val = interesting_8[j];
|
|
out_buf[i] = interesting_8[j];
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
out_buf[i] = orig;
|
|
++stage_cur;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_INTEREST8] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_INTEREST8] += stage_max;
|
|
|
|
/* Setting 16-bit integers, both endians. */
|
|
|
|
if (no_arith || len < 2) goto skip_interest;
|
|
|
|
stage_name = "interest 16/8";
|
|
stage_short = "int16";
|
|
stage_cur = 0;
|
|
stage_max = 2 * (len - 1) * (sizeof(interesting_16) >> 1);
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 1; ++i) {
|
|
|
|
u16 orig = *(u16*)(out_buf + i);
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)]) {
|
|
|
|
stage_max -= sizeof(interesting_16);
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < sizeof(interesting_16) / 2; ++j) {
|
|
|
|
stage_cur_val = interesting_16[j];
|
|
|
|
/* Skip if this could be a product of a bitflip, arithmetics,
|
|
or single-byte interesting value insertion. */
|
|
|
|
if (!could_be_bitflip(orig ^ (u16)interesting_16[j]) &&
|
|
!could_be_arith(orig, (u16)interesting_16[j], 2) &&
|
|
!could_be_interest(orig, (u16)interesting_16[j], 2, 0)) {
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
*(u16*)(out_buf + i) = interesting_16[j];
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
if ((u16)interesting_16[j] != SWAP16(interesting_16[j]) &&
|
|
!could_be_bitflip(orig ^ SWAP16(interesting_16[j])) &&
|
|
!could_be_arith(orig, SWAP16(interesting_16[j]), 2) &&
|
|
!could_be_interest(orig, SWAP16(interesting_16[j]), 2, 1)) {
|
|
|
|
stage_val_type = STAGE_VAL_BE;
|
|
|
|
*(u16*)(out_buf + i) = SWAP16(interesting_16[j]);
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
}
|
|
|
|
*(u16*)(out_buf + i) = orig;
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_INTEREST16] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_INTEREST16] += stage_max;
|
|
|
|
if (len < 4) goto skip_interest;
|
|
|
|
/* Setting 32-bit integers, both endians. */
|
|
|
|
stage_name = "interest 32/8";
|
|
stage_short = "int32";
|
|
stage_cur = 0;
|
|
stage_max = 2 * (len - 3) * (sizeof(interesting_32) >> 2);
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 3; i++) {
|
|
|
|
u32 orig = *(u32*)(out_buf + i);
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)] &&
|
|
!eff_map[EFF_APOS(i + 2)] && !eff_map[EFF_APOS(i + 3)]) {
|
|
|
|
stage_max -= sizeof(interesting_32) >> 1;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < sizeof(interesting_32) / 4; ++j) {
|
|
|
|
stage_cur_val = interesting_32[j];
|
|
|
|
/* Skip if this could be a product of a bitflip, arithmetics,
|
|
or word interesting value insertion. */
|
|
|
|
if (!could_be_bitflip(orig ^ (u32)interesting_32[j]) &&
|
|
!could_be_arith(orig, interesting_32[j], 4) &&
|
|
!could_be_interest(orig, interesting_32[j], 4, 0)) {
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
*(u32*)(out_buf + i) = interesting_32[j];
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
if ((u32)interesting_32[j] != SWAP32(interesting_32[j]) &&
|
|
!could_be_bitflip(orig ^ SWAP32(interesting_32[j])) &&
|
|
!could_be_arith(orig, SWAP32(interesting_32[j]), 4) &&
|
|
!could_be_interest(orig, SWAP32(interesting_32[j]), 4, 1)) {
|
|
|
|
stage_val_type = STAGE_VAL_BE;
|
|
|
|
*(u32*)(out_buf + i) = SWAP32(interesting_32[j]);
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
}
|
|
|
|
*(u32*)(out_buf + i) = orig;
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_INTEREST32] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_INTEREST32] += stage_max;
|
|
|
|
skip_interest:
|
|
|
|
/********************
|
|
* DICTIONARY STUFF *
|
|
********************/
|
|
|
|
if (!extras_cnt) goto skip_user_extras;
|
|
|
|
/* Overwrite with user-supplied extras. */
|
|
|
|
stage_name = "user extras (over)";
|
|
stage_short = "ext_UO";
|
|
stage_cur = 0;
|
|
stage_max = extras_cnt * len;
|
|
|
|
stage_val_type = STAGE_VAL_NONE;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
|
|
u32 last_len = 0;
|
|
|
|
stage_cur_byte = i;
|
|
|
|
/* Extras are sorted by size, from smallest to largest. This means
|
|
that we don't have to worry about restoring the buffer in
|
|
between writes at a particular offset determined by the outer
|
|
loop. */
|
|
|
|
for (j = 0; j < extras_cnt; ++j) {
|
|
|
|
/* Skip extras probabilistically if extras_cnt > MAX_DET_EXTRAS. Also
|
|
skip them if there's no room to insert the payload, if the token
|
|
is redundant, or if its entire span has no bytes set in the effector
|
|
map. */
|
|
|
|
if ((extras_cnt > MAX_DET_EXTRAS && UR(extras_cnt) >= MAX_DET_EXTRAS) ||
|
|
extras[j].len > len - i ||
|
|
!memcmp(extras[j].data, out_buf + i, extras[j].len) ||
|
|
!memchr(eff_map + EFF_APOS(i), 1, EFF_SPAN_ALEN(i, extras[j].len))) {
|
|
|
|
--stage_max;
|
|
continue;
|
|
|
|
}
|
|
|
|
last_len = extras[j].len;
|
|
memcpy(out_buf + i, extras[j].data, last_len);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
++stage_cur;
|
|
|
|
}
|
|
|
|
/* Restore all the clobbered memory. */
|
|
memcpy(out_buf + i, in_buf + i, last_len);
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_EXTRAS_UO] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_EXTRAS_UO] += stage_max;
|
|
|
|
/* Insertion of user-supplied extras. */
|
|
|
|
stage_name = "user extras (insert)";
|
|
stage_short = "ext_UI";
|
|
stage_cur = 0;
|
|
stage_max = extras_cnt * len;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
ex_tmp = ck_alloc(len + MAX_DICT_FILE);
|
|
|
|
for (i = 0; i <= len; ++i) {
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < extras_cnt; ++j) {
|
|
|
|
if (len + extras[j].len > MAX_FILE) {
|
|
|
|
--stage_max;
|
|
continue;
|
|
|
|
}
|
|
|
|
/* Insert token */
|
|
memcpy(ex_tmp + i, extras[j].data, extras[j].len);
|
|
|
|
/* Copy tail */
|
|
memcpy(ex_tmp + i + extras[j].len, out_buf + i, len - i);
|
|
|
|
if (common_fuzz_stuff(argv, ex_tmp, len + extras[j].len)) {
|
|
|
|
ck_free(ex_tmp);
|
|
goto abandon_entry;
|
|
|
|
}
|
|
|
|
++stage_cur;
|
|
|
|
}
|
|
|
|
/* Copy head */
|
|
ex_tmp[i] = out_buf[i];
|
|
|
|
}
|
|
|
|
ck_free(ex_tmp);
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_EXTRAS_UI] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_EXTRAS_UI] += stage_max;
|
|
|
|
skip_user_extras:
|
|
|
|
if (!a_extras_cnt) goto skip_extras;
|
|
|
|
stage_name = "auto extras (over)";
|
|
stage_short = "ext_AO";
|
|
stage_cur = 0;
|
|
stage_max = MIN(a_extras_cnt, USE_AUTO_EXTRAS) * len;
|
|
|
|
stage_val_type = STAGE_VAL_NONE;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
|
|
u32 last_len = 0;
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < MIN(a_extras_cnt, USE_AUTO_EXTRAS); ++j) {
|
|
|
|
/* See the comment in the earlier code; extras are sorted by size. */
|
|
|
|
if (a_extras[j].len > len - i ||
|
|
!memcmp(a_extras[j].data, out_buf + i, a_extras[j].len) ||
|
|
!memchr(eff_map + EFF_APOS(i), 1,
|
|
EFF_SPAN_ALEN(i, a_extras[j].len))) {
|
|
|
|
--stage_max;
|
|
continue;
|
|
|
|
}
|
|
|
|
last_len = a_extras[j].len;
|
|
memcpy(out_buf + i, a_extras[j].data, last_len);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
++stage_cur;
|
|
|
|
}
|
|
|
|
/* Restore all the clobbered memory. */
|
|
memcpy(out_buf + i, in_buf + i, last_len);
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_EXTRAS_AO] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_EXTRAS_AO] += stage_max;
|
|
|
|
skip_extras:
|
|
|
|
/* If we made this to here without jumping to havoc_stage or abandon_entry,
|
|
we're properly done with deterministic steps and can mark it as such
|
|
in the .state/ directory. */
|
|
|
|
if (!queue_cur->passed_det) mark_as_det_done(queue_cur);
|
|
|
|
#ifdef USE_PYTHON
|
|
python_stage:
|
|
/**********************************
|
|
* EXTERNAL MUTATORS (Python API) *
|
|
**********************************/
|
|
|
|
if (!py_module) goto havoc_stage;
|
|
|
|
stage_name = "python";
|
|
stage_short = "python";
|
|
stage_max = HAVOC_CYCLES * perf_score / havoc_div / 100;
|
|
|
|
if (stage_max < HAVOC_MIN) stage_max = HAVOC_MIN;
|
|
|
|
orig_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
char* retbuf = NULL;
|
|
size_t retlen = 0;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) {
|
|
|
|
struct queue_entry* target;
|
|
u32 tid;
|
|
u8* new_buf;
|
|
|
|
retry_external_pick:
|
|
/* Pick a random other queue entry for passing to external API */
|
|
do {
|
|
|
|
tid = UR(queued_paths);
|
|
|
|
} while (tid == current_entry && queued_paths > 1);
|
|
|
|
target = queue;
|
|
|
|
while (tid >= 100) {
|
|
|
|
target = target->next_100;
|
|
tid -= 100;
|
|
|
|
}
|
|
|
|
while (tid--)
|
|
target = target->next;
|
|
|
|
/* Make sure that the target has a reasonable length. */
|
|
|
|
while (target && (target->len < 2 || target == queue_cur) &&
|
|
queued_paths > 1) {
|
|
|
|
target = target->next;
|
|
++splicing_with;
|
|
|
|
}
|
|
|
|
if (!target) goto retry_external_pick;
|
|
|
|
/* Read the additional testcase into a new buffer. */
|
|
fd = open(target->fname, O_RDONLY);
|
|
if (fd < 0) PFATAL("Unable to open '%s'", target->fname);
|
|
new_buf = ck_alloc_nozero(target->len);
|
|
ck_read(fd, new_buf, target->len, target->fname);
|
|
close(fd);
|
|
|
|
fuzz_py(out_buf, len, new_buf, target->len, &retbuf, &retlen);
|
|
|
|
ck_free(new_buf);
|
|
|
|
if (retbuf) {
|
|
|
|
if (!retlen) goto abandon_entry;
|
|
|
|
if (common_fuzz_stuff(argv, retbuf, retlen)) {
|
|
|
|
free(retbuf);
|
|
goto abandon_entry;
|
|
|
|
}
|
|
|
|
/* Reset retbuf/retlen */
|
|
free(retbuf);
|
|
retbuf = NULL;
|
|
retlen = 0;
|
|
|
|
/* If we're finding new stuff, let's run for a bit longer, limits
|
|
permitting. */
|
|
|
|
if (queued_paths != havoc_queued) {
|
|
|
|
if (perf_score <= havoc_max_mult * 100) {
|
|
|
|
stage_max *= 2;
|
|
perf_score *= 2;
|
|
|
|
}
|
|
|
|
havoc_queued = queued_paths;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_PYTHON] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_PYTHON] += stage_max;
|
|
|
|
if (python_only) {
|
|
|
|
/* Skip other stages */
|
|
ret_val = 0;
|
|
goto abandon_entry;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
/****************
|
|
* RANDOM HAVOC *
|
|
****************/
|
|
|
|
havoc_stage:
|
|
|
|
stage_cur_byte = -1;
|
|
|
|
/* The havoc stage mutation code is also invoked when splicing files; if the
|
|
splice_cycle variable is set, generate different descriptions and such. */
|
|
|
|
if (!splice_cycle) {
|
|
|
|
stage_name = "havoc";
|
|
stage_short = "havoc";
|
|
stage_max = (doing_det ? HAVOC_CYCLES_INIT : HAVOC_CYCLES) * perf_score /
|
|
havoc_div / 100;
|
|
|
|
} else {
|
|
|
|
static u8 tmp[32];
|
|
|
|
perf_score = orig_perf;
|
|
|
|
sprintf(tmp, "splice %u", splice_cycle);
|
|
stage_name = tmp;
|
|
stage_short = "splice";
|
|
stage_max = SPLICE_HAVOC * perf_score / havoc_div / 100;
|
|
|
|
}
|
|
|
|
if (stage_max < HAVOC_MIN) stage_max = HAVOC_MIN;
|
|
|
|
temp_len = len;
|
|
|
|
orig_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
havoc_queued = queued_paths;
|
|
|
|
/* We essentially just do several thousand runs (depending on perf_score)
|
|
where we take the input file and make random stacked tweaks. */
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) {
|
|
|
|
u32 use_stacking = 1 << (1 + UR(HAVOC_STACK_POW2));
|
|
|
|
stage_cur_val = use_stacking;
|
|
|
|
for (i = 0; i < use_stacking; ++i) {
|
|
|
|
switch (UR(15 + ((extras_cnt + a_extras_cnt) ? 2 : 0))) {
|
|
|
|
case 0:
|
|
|
|
/* Flip a single bit somewhere. Spooky! */
|
|
|
|
FLIP_BIT(out_buf, UR(temp_len << 3));
|
|
break;
|
|
|
|
case 1:
|
|
|
|
/* Set byte to interesting value. */
|
|
|
|
out_buf[UR(temp_len)] = interesting_8[UR(sizeof(interesting_8))];
|
|
break;
|
|
|
|
case 2:
|
|
|
|
/* Set word to interesting value, randomly choosing endian. */
|
|
|
|
if (temp_len < 2) break;
|
|
|
|
if (UR(2)) {
|
|
|
|
*(u16*)(out_buf + UR(temp_len - 1)) =
|
|
interesting_16[UR(sizeof(interesting_16) >> 1)];
|
|
|
|
} else {
|
|
|
|
*(u16*)(out_buf + UR(temp_len - 1)) =
|
|
SWAP16(interesting_16[UR(sizeof(interesting_16) >> 1)]);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
/* Set dword to interesting value, randomly choosing endian. */
|
|
|
|
if (temp_len < 4) break;
|
|
|
|
if (UR(2)) {
|
|
|
|
*(u32*)(out_buf + UR(temp_len - 3)) =
|
|
interesting_32[UR(sizeof(interesting_32) >> 2)];
|
|
|
|
} else {
|
|
|
|
*(u32*)(out_buf + UR(temp_len - 3)) =
|
|
SWAP32(interesting_32[UR(sizeof(interesting_32) >> 2)]);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
/* Randomly subtract from byte. */
|
|
|
|
out_buf[UR(temp_len)] -= 1 + UR(ARITH_MAX);
|
|
break;
|
|
|
|
case 5:
|
|
|
|
/* Randomly add to byte. */
|
|
|
|
out_buf[UR(temp_len)] += 1 + UR(ARITH_MAX);
|
|
break;
|
|
|
|
case 6:
|
|
|
|
/* Randomly subtract from word, random endian. */
|
|
|
|
if (temp_len < 2) break;
|
|
|
|
if (UR(2)) {
|
|
|
|
u32 pos = UR(temp_len - 1);
|
|
|
|
*(u16*)(out_buf + pos) -= 1 + UR(ARITH_MAX);
|
|
|
|
} else {
|
|
|
|
u32 pos = UR(temp_len - 1);
|
|
u16 num = 1 + UR(ARITH_MAX);
|
|
|
|
*(u16*)(out_buf + pos) =
|
|
SWAP16(SWAP16(*(u16*)(out_buf + pos)) - num);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 7:
|
|
|
|
/* Randomly add to word, random endian. */
|
|
|
|
if (temp_len < 2) break;
|
|
|
|
if (UR(2)) {
|
|
|
|
u32 pos = UR(temp_len - 1);
|
|
|
|
*(u16*)(out_buf + pos) += 1 + UR(ARITH_MAX);
|
|
|
|
} else {
|
|
|
|
u32 pos = UR(temp_len - 1);
|
|
u16 num = 1 + UR(ARITH_MAX);
|
|
|
|
*(u16*)(out_buf + pos) =
|
|
SWAP16(SWAP16(*(u16*)(out_buf + pos)) + num);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 8:
|
|
|
|
/* Randomly subtract from dword, random endian. */
|
|
|
|
if (temp_len < 4) break;
|
|
|
|
if (UR(2)) {
|
|
|
|
u32 pos = UR(temp_len - 3);
|
|
|
|
*(u32*)(out_buf + pos) -= 1 + UR(ARITH_MAX);
|
|
|
|
} else {
|
|
|
|
u32 pos = UR(temp_len - 3);
|
|
u32 num = 1 + UR(ARITH_MAX);
|
|
|
|
*(u32*)(out_buf + pos) =
|
|
SWAP32(SWAP32(*(u32*)(out_buf + pos)) - num);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 9:
|
|
|
|
/* Randomly add to dword, random endian. */
|
|
|
|
if (temp_len < 4) break;
|
|
|
|
if (UR(2)) {
|
|
|
|
u32 pos = UR(temp_len - 3);
|
|
|
|
*(u32*)(out_buf + pos) += 1 + UR(ARITH_MAX);
|
|
|
|
} else {
|
|
|
|
u32 pos = UR(temp_len - 3);
|
|
u32 num = 1 + UR(ARITH_MAX);
|
|
|
|
*(u32*)(out_buf + pos) =
|
|
SWAP32(SWAP32(*(u32*)(out_buf + pos)) + num);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 10:
|
|
|
|
/* Just set a random byte to a random value. Because,
|
|
why not. We use XOR with 1-255 to eliminate the
|
|
possibility of a no-op. */
|
|
|
|
out_buf[UR(temp_len)] ^= 1 + UR(255);
|
|
break;
|
|
|
|
case 11 ... 12: {
|
|
|
|
/* Delete bytes. We're making this a bit more likely
|
|
than insertion (the next option) in hopes of keeping
|
|
files reasonably small. */
|
|
|
|
u32 del_from, del_len;
|
|
|
|
if (temp_len < 2) break;
|
|
|
|
/* Don't delete too much. */
|
|
|
|
del_len = choose_block_len(temp_len - 1);
|
|
|
|
del_from = UR(temp_len - del_len + 1);
|
|
|
|
memmove(out_buf + del_from, out_buf + del_from + del_len,
|
|
temp_len - del_from - del_len);
|
|
|
|
temp_len -= del_len;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 13:
|
|
|
|
if (temp_len + HAVOC_BLK_XL < MAX_FILE) {
|
|
|
|
/* Clone bytes (75%) or insert a block of constant bytes (25%). */
|
|
|
|
u8 actually_clone = UR(4);
|
|
u32 clone_from, clone_to, clone_len;
|
|
u8* new_buf;
|
|
|
|
if (actually_clone) {
|
|
|
|
clone_len = choose_block_len(temp_len);
|
|
clone_from = UR(temp_len - clone_len + 1);
|
|
|
|
} else {
|
|
|
|
clone_len = choose_block_len(HAVOC_BLK_XL);
|
|
clone_from = 0;
|
|
|
|
}
|
|
|
|
clone_to = UR(temp_len);
|
|
|
|
new_buf = ck_alloc_nozero(temp_len + clone_len);
|
|
|
|
/* Head */
|
|
|
|
memcpy(new_buf, out_buf, clone_to);
|
|
|
|
/* Inserted part */
|
|
|
|
if (actually_clone)
|
|
memcpy(new_buf + clone_to, out_buf + clone_from, clone_len);
|
|
else
|
|
memset(new_buf + clone_to,
|
|
UR(2) ? UR(256) : out_buf[UR(temp_len)], clone_len);
|
|
|
|
/* Tail */
|
|
memcpy(new_buf + clone_to + clone_len, out_buf + clone_to,
|
|
temp_len - clone_to);
|
|
|
|
ck_free(out_buf);
|
|
out_buf = new_buf;
|
|
temp_len += clone_len;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 14: {
|
|
|
|
/* Overwrite bytes with a randomly selected chunk (75%) or fixed
|
|
bytes (25%). */
|
|
|
|
u32 copy_from, copy_to, copy_len;
|
|
|
|
if (temp_len < 2) break;
|
|
|
|
copy_len = choose_block_len(temp_len - 1);
|
|
|
|
copy_from = UR(temp_len - copy_len + 1);
|
|
copy_to = UR(temp_len - copy_len + 1);
|
|
|
|
if (UR(4)) {
|
|
|
|
if (copy_from != copy_to)
|
|
memmove(out_buf + copy_to, out_buf + copy_from, copy_len);
|
|
|
|
} else
|
|
|
|
memset(out_buf + copy_to, UR(2) ? UR(256) : out_buf[UR(temp_len)],
|
|
copy_len);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* Values 15 and 16 can be selected only if there are any extras
|
|
present in the dictionaries. */
|
|
|
|
case 15: {
|
|
|
|
/* Overwrite bytes with an extra. */
|
|
|
|
if (!extras_cnt || (a_extras_cnt && UR(2))) {
|
|
|
|
/* No user-specified extras or odds in our favor. Let's use an
|
|
auto-detected one. */
|
|
|
|
u32 use_extra = UR(a_extras_cnt);
|
|
u32 extra_len = a_extras[use_extra].len;
|
|
u32 insert_at;
|
|
|
|
if (extra_len > temp_len) break;
|
|
|
|
insert_at = UR(temp_len - extra_len + 1);
|
|
memcpy(out_buf + insert_at, a_extras[use_extra].data, extra_len);
|
|
|
|
} else {
|
|
|
|
/* No auto extras or odds in our favor. Use the dictionary. */
|
|
|
|
u32 use_extra = UR(extras_cnt);
|
|
u32 extra_len = extras[use_extra].len;
|
|
u32 insert_at;
|
|
|
|
if (extra_len > temp_len) break;
|
|
|
|
insert_at = UR(temp_len - extra_len + 1);
|
|
memcpy(out_buf + insert_at, extras[use_extra].data, extra_len);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 16: {
|
|
|
|
u32 use_extra, extra_len, insert_at = UR(temp_len + 1);
|
|
u8* new_buf;
|
|
|
|
/* Insert an extra. Do the same dice-rolling stuff as for the
|
|
previous case. */
|
|
|
|
if (!extras_cnt || (a_extras_cnt && UR(2))) {
|
|
|
|
use_extra = UR(a_extras_cnt);
|
|
extra_len = a_extras[use_extra].len;
|
|
|
|
if (temp_len + extra_len >= MAX_FILE) break;
|
|
|
|
new_buf = ck_alloc_nozero(temp_len + extra_len);
|
|
|
|
/* Head */
|
|
memcpy(new_buf, out_buf, insert_at);
|
|
|
|
/* Inserted part */
|
|
memcpy(new_buf + insert_at, a_extras[use_extra].data, extra_len);
|
|
|
|
} else {
|
|
|
|
use_extra = UR(extras_cnt);
|
|
extra_len = extras[use_extra].len;
|
|
|
|
if (temp_len + extra_len >= MAX_FILE) break;
|
|
|
|
new_buf = ck_alloc_nozero(temp_len + extra_len);
|
|
|
|
/* Head */
|
|
memcpy(new_buf, out_buf, insert_at);
|
|
|
|
/* Inserted part */
|
|
memcpy(new_buf + insert_at, extras[use_extra].data, extra_len);
|
|
|
|
}
|
|
|
|
/* Tail */
|
|
memcpy(new_buf + insert_at + extra_len, out_buf + insert_at,
|
|
temp_len - insert_at);
|
|
|
|
ck_free(out_buf);
|
|
out_buf = new_buf;
|
|
temp_len += extra_len;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, temp_len)) goto abandon_entry;
|
|
|
|
/* out_buf might have been mangled a bit, so let's restore it to its
|
|
original size and shape. */
|
|
|
|
if (temp_len < len) out_buf = ck_realloc(out_buf, len);
|
|
temp_len = len;
|
|
memcpy(out_buf, in_buf, len);
|
|
|
|
/* If we're finding new stuff, let's run for a bit longer, limits
|
|
permitting. */
|
|
|
|
if (queued_paths != havoc_queued) {
|
|
|
|
if (perf_score <= havoc_max_mult * 100) {
|
|
|
|
stage_max *= 2;
|
|
perf_score *= 2;
|
|
|
|
}
|
|
|
|
havoc_queued = queued_paths;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
if (!splice_cycle) {
|
|
|
|
stage_finds[STAGE_HAVOC] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_HAVOC] += stage_max;
|
|
|
|
} else {
|
|
|
|
stage_finds[STAGE_SPLICE] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_SPLICE] += stage_max;
|
|
|
|
}
|
|
|
|
#ifndef IGNORE_FINDS
|
|
|
|
/************
|
|
* SPLICING *
|
|
************/
|
|
|
|
/* This is a last-resort strategy triggered by a full round with no findings.
|
|
It takes the current input file, randomly selects another input, and
|
|
splices them together at some offset, then relies on the havoc
|
|
code to mutate that blob. */
|
|
|
|
retry_splicing:
|
|
|
|
if (use_splicing && splice_cycle++ < SPLICE_CYCLES && queued_paths > 1 &&
|
|
queue_cur->len > 1) {
|
|
|
|
struct queue_entry* target;
|
|
u32 tid, split_at;
|
|
u8* new_buf;
|
|
s32 f_diff, l_diff;
|
|
|
|
/* First of all, if we've modified in_buf for havoc, let's clean that
|
|
up... */
|
|
|
|
if (in_buf != orig_in) {
|
|
|
|
ck_free(in_buf);
|
|
in_buf = orig_in;
|
|
len = queue_cur->len;
|
|
|
|
}
|
|
|
|
/* Pick a random queue entry and seek to it. Don't splice with yourself. */
|
|
|
|
do {
|
|
|
|
tid = UR(queued_paths);
|
|
|
|
} while (tid == current_entry);
|
|
|
|
splicing_with = tid;
|
|
target = queue;
|
|
|
|
while (tid >= 100) {
|
|
|
|
target = target->next_100;
|
|
tid -= 100;
|
|
|
|
}
|
|
|
|
while (tid--)
|
|
target = target->next;
|
|
|
|
/* Make sure that the target has a reasonable length. */
|
|
|
|
while (target && (target->len < 2 || target == queue_cur)) {
|
|
|
|
target = target->next;
|
|
++splicing_with;
|
|
|
|
}
|
|
|
|
if (!target) goto retry_splicing;
|
|
|
|
/* Read the testcase into a new buffer. */
|
|
|
|
fd = open(target->fname, O_RDONLY);
|
|
|
|
if (fd < 0) PFATAL("Unable to open '%s'", target->fname);
|
|
|
|
new_buf = ck_alloc_nozero(target->len);
|
|
|
|
ck_read(fd, new_buf, target->len, target->fname);
|
|
|
|
close(fd);
|
|
|
|
/* Find a suitable splicing location, somewhere between the first and
|
|
the last differing byte. Bail out if the difference is just a single
|
|
byte or so. */
|
|
|
|
locate_diffs(in_buf, new_buf, MIN(len, target->len), &f_diff, &l_diff);
|
|
|
|
if (f_diff < 0 || l_diff < 2 || f_diff == l_diff) {
|
|
|
|
ck_free(new_buf);
|
|
goto retry_splicing;
|
|
|
|
}
|
|
|
|
/* Split somewhere between the first and last differing byte. */
|
|
|
|
split_at = f_diff + UR(l_diff - f_diff);
|
|
|
|
/* Do the thing. */
|
|
|
|
len = target->len;
|
|
memcpy(new_buf, in_buf, split_at);
|
|
in_buf = new_buf;
|
|
|
|
ck_free(out_buf);
|
|
out_buf = ck_alloc_nozero(len);
|
|
memcpy(out_buf, in_buf, len);
|
|
|
|
if (use_radamsa > 1)
|
|
goto radamsa_stage;
|
|
else
|
|
#ifdef USE_PYTHON
|
|
goto python_stage;
|
|
#else
|
|
goto havoc_stage;
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif /* !IGNORE_FINDS */
|
|
|
|
ret_val = 0;
|
|
goto radamsa_stage;
|
|
|
|
|
|
radamsa_stage:
|
|
|
|
if (!use_radamsa)
|
|
goto abandon_entry;
|
|
|
|
stage_name = "radamsa";
|
|
stage_short = "radamsa";
|
|
stage_max = (HAVOC_CYCLES * perf_score / havoc_div / 100) << use_radamsa;
|
|
|
|
if (stage_max < HAVOC_MIN) stage_max = HAVOC_MIN;
|
|
|
|
orig_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
/* Read the additional testcase into a new buffer. */
|
|
u8 *save_buf = ck_alloc_nozero(len);
|
|
memcpy(save_buf, out_buf, len);
|
|
|
|
u32 max_len = len + choose_block_len(HAVOC_BLK_XL);
|
|
u8* new_buf = ck_alloc_nozero(max_len);
|
|
u8 *tmp_buf;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) {
|
|
u32 new_len = radamsa_mutate(save_buf, len, new_buf, max_len, get_rand_seed());
|
|
|
|
if (new_len) {
|
|
|
|
temp_len = new_len;
|
|
tmp_buf = new_buf;
|
|
|
|
} else {
|
|
|
|
tmp_buf = save_buf; // nope but I dont care
|
|
temp_len = len;
|
|
|
|
}
|
|
|
|
if (common_fuzz_stuff(argv, tmp_buf, temp_len)) {
|
|
|
|
ck_free(save_buf);
|
|
ck_free(new_buf);
|
|
goto abandon_entry;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ck_free(save_buf);
|
|
ck_free(new_buf);
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_RADAMSA] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_RADAMSA] += stage_max;
|
|
|
|
ret_val = 0;
|
|
goto abandon_entry;
|
|
|
|
/* we are through with this queue entry - for this iteration */
|
|
abandon_entry:
|
|
|
|
splicing_with = -1;
|
|
|
|
/* Update pending_not_fuzzed count if we made it through the calibration
|
|
cycle and have not seen this entry before. */
|
|
|
|
if (!stop_soon && !queue_cur->cal_failed &&
|
|
(queue_cur->was_fuzzed == 0 || queue_cur->fuzz_level == 0)) {
|
|
|
|
--pending_not_fuzzed;
|
|
queue_cur->was_fuzzed = 1;
|
|
if (queue_cur->favored) --pending_favored;
|
|
|
|
}
|
|
|
|
++queue_cur->fuzz_level;
|
|
|
|
munmap(orig_in, queue_cur->len);
|
|
|
|
if (in_buf != orig_in) ck_free(in_buf);
|
|
ck_free(out_buf);
|
|
ck_free(eff_map);
|
|
|
|
return ret_val;
|
|
|
|
#undef FLIP_BIT
|
|
|
|
}
|
|
|
|
struct MOpt_globals_t {
|
|
|
|
u64* finds;
|
|
u64* finds_v2;
|
|
u64* cycles;
|
|
u64* cycles_v2;
|
|
u64* cycles_v3;
|
|
u32 is_pilot_mode;
|
|
u64* pTime;
|
|
const u64 period;
|
|
char* havoc_stagename;
|
|
char* splice_stageformat;
|
|
char* havoc_stagenameshort;
|
|
char* splice_stagenameshort;
|
|
|
|
} MOpt_globals_pilot = {stage_finds_puppet[0],
|
|
|
|
stage_finds_puppet_v2[0],
|
|
stage_cycles_puppet[0],
|
|
stage_cycles_puppet_v2[0],
|
|
stage_cycles_puppet_v3[0],
|
|
1,
|
|
&tmp_pilot_time,
|
|
period_pilot,
|
|
"MOpt-havoc",
|
|
"MOpt-splice %u",
|
|
"MOpt_havoc",
|
|
"MOpt_splice"},
|
|
MOpt_globals_core = {core_operator_finds_puppet,
|
|
core_operator_finds_puppet_v2,
|
|
core_operator_cycles_puppet,
|
|
core_operator_cycles_puppet_v2,
|
|
core_operator_cycles_puppet_v3,
|
|
0,
|
|
&tmp_core_time,
|
|
period_core,
|
|
"MOpt-core-havoc",
|
|
"MOpt-core-splice %u",
|
|
"MOpt_core_havoc",
|
|
"MOpt_core_splice"};
|
|
|
|
/* MOpt mode */
|
|
u8 common_fuzzing(char** argv, struct MOpt_globals_t MOpt_globals) {
|
|
|
|
if (!MOpt_globals.is_pilot_mode) {
|
|
|
|
if (swarm_num == 1) {
|
|
|
|
key_module = 2;
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
s32 len, fd, temp_len, i, j;
|
|
u8 *in_buf, *out_buf, *orig_in, *ex_tmp, *eff_map = 0;
|
|
u64 havoc_queued, orig_hit_cnt, new_hit_cnt, cur_ms_lv;
|
|
u32 splice_cycle = 0, perf_score = 100, orig_perf, prev_cksum, eff_cnt = 1;
|
|
|
|
u8 ret_val = 1, doing_det = 0;
|
|
|
|
u8 a_collect[MAX_AUTO_EXTRA];
|
|
u32 a_len = 0;
|
|
|
|
#ifdef IGNORE_FINDS
|
|
|
|
/* In IGNORE_FINDS mode, skip any entries that weren't in the
|
|
initial data set. */
|
|
|
|
if (queue_cur->depth > 1) return 1;
|
|
|
|
#else
|
|
|
|
if (pending_favored) {
|
|
|
|
/* If we have any favored, non-fuzzed new arrivals in the queue,
|
|
possibly skip to them at the expense of already-fuzzed or non-favored
|
|
cases. */
|
|
|
|
if ((queue_cur->was_fuzzed || !queue_cur->favored) &&
|
|
UR(100) < SKIP_TO_NEW_PROB)
|
|
return 1;
|
|
|
|
} else if (!dumb_mode && !queue_cur->favored && queued_paths > 10) {
|
|
|
|
/* Otherwise, still possibly skip non-favored cases, albeit less often.
|
|
The odds of skipping stuff are higher for already-fuzzed inputs and
|
|
lower for never-fuzzed entries. */
|
|
|
|
if (queue_cycle > 1 && !queue_cur->was_fuzzed) {
|
|
|
|
if (UR(100) < SKIP_NFAV_NEW_PROB) return 1;
|
|
|
|
} else {
|
|
|
|
if (UR(100) < SKIP_NFAV_OLD_PROB) return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* ^IGNORE_FINDS */
|
|
|
|
if (not_on_tty) {
|
|
|
|
ACTF("Fuzzing test case #%u (%u total, %llu uniq crashes found)...",
|
|
current_entry, queued_paths, unique_crashes);
|
|
fflush(stdout);
|
|
|
|
}
|
|
|
|
/* Map the test case into memory. */
|
|
|
|
fd = open(queue_cur->fname, O_RDONLY);
|
|
|
|
if (fd < 0) PFATAL("Unable to open '%s'", queue_cur->fname);
|
|
|
|
len = queue_cur->len;
|
|
|
|
orig_in = in_buf = mmap(0, len, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
|
|
|
|
if (orig_in == MAP_FAILED) PFATAL("Unable to mmap '%s'", queue_cur->fname);
|
|
|
|
close(fd);
|
|
|
|
/* We could mmap() out_buf as MAP_PRIVATE, but we end up clobbering every
|
|
single byte anyway, so it wouldn't give us any performance or memory usage
|
|
benefits. */
|
|
|
|
out_buf = ck_alloc_nozero(len);
|
|
|
|
subseq_tmouts = 0;
|
|
|
|
cur_depth = queue_cur->depth;
|
|
|
|
/*******************************************
|
|
* CALIBRATION (only if failed earlier on) *
|
|
*******************************************/
|
|
|
|
if (queue_cur->cal_failed) {
|
|
|
|
u8 res = FAULT_TMOUT;
|
|
|
|
if (queue_cur->cal_failed < CAL_CHANCES) {
|
|
|
|
res = calibrate_case(argv, queue_cur, in_buf, queue_cycle - 1, 0);
|
|
|
|
if (res == FAULT_ERROR) FATAL("Unable to execute target application");
|
|
|
|
}
|
|
|
|
if (stop_soon || res != crash_mode) {
|
|
|
|
++cur_skipped_paths;
|
|
goto abandon_entry;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/************
|
|
* TRIMMING *
|
|
************/
|
|
|
|
if (!dumb_mode && !queue_cur->trim_done) {
|
|
|
|
u8 res = trim_case(argv, queue_cur, in_buf);
|
|
|
|
if (res == FAULT_ERROR) FATAL("Unable to execute target application");
|
|
|
|
if (stop_soon) {
|
|
|
|
++cur_skipped_paths;
|
|
goto abandon_entry;
|
|
|
|
}
|
|
|
|
/* Don't retry trimming, even if it failed. */
|
|
|
|
queue_cur->trim_done = 1;
|
|
|
|
len = queue_cur->len;
|
|
|
|
}
|
|
|
|
memcpy(out_buf, in_buf, len);
|
|
|
|
/*********************
|
|
* PERFORMANCE SCORE *
|
|
*********************/
|
|
|
|
orig_perf = perf_score = calculate_score(queue_cur);
|
|
|
|
/* Skip right away if -d is given, if we have done deterministic fuzzing on
|
|
this entry ourselves (was_fuzzed), or if it has gone through deterministic
|
|
testing in earlier, resumed runs (passed_det). */
|
|
|
|
if (skip_deterministic || queue_cur->was_fuzzed || queue_cur->passed_det)
|
|
goto havoc_stage;
|
|
|
|
/* Skip deterministic fuzzing if exec path checksum puts this out of scope
|
|
for this master instance. */
|
|
|
|
if (master_max && (queue_cur->exec_cksum % master_max) != master_id - 1)
|
|
goto havoc_stage;
|
|
|
|
cur_ms_lv = get_cur_time();
|
|
if (!(key_puppet == 0 && ((cur_ms_lv - last_path_time < limit_time_puppet) ||
|
|
(last_crash_time != 0 &&
|
|
cur_ms_lv - last_crash_time < limit_time_puppet) ||
|
|
last_path_time == 0))) {
|
|
|
|
key_puppet = 1;
|
|
goto pacemaker_fuzzing;
|
|
|
|
}
|
|
|
|
doing_det = 1;
|
|
|
|
/*********************************************
|
|
* SIMPLE BITFLIP (+dictionary construction) *
|
|
*********************************************/
|
|
|
|
#define FLIP_BIT(_ar, _b) \
|
|
do { \
|
|
\
|
|
u8* _arf = (u8*)(_ar); \
|
|
u32 _bf = (_b); \
|
|
_arf[(_bf) >> 3] ^= (128 >> ((_bf)&7)); \
|
|
\
|
|
} while (0)
|
|
|
|
/* Single walking bit. */
|
|
|
|
stage_short = "flip1";
|
|
stage_max = len << 3;
|
|
stage_name = "bitflip 1/1";
|
|
|
|
stage_val_type = STAGE_VAL_NONE;
|
|
|
|
orig_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
prev_cksum = queue_cur->exec_cksum;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) {
|
|
|
|
stage_cur_byte = stage_cur >> 3;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
|
|
/* While flipping the least significant bit in every byte, pull of an extra
|
|
trick to detect possible syntax tokens. In essence, the idea is that if
|
|
you have a binary blob like this:
|
|
|
|
xxxxxxxxIHDRxxxxxxxx
|
|
|
|
...and changing the leading and trailing bytes causes variable or no
|
|
changes in program flow, but touching any character in the "IHDR" string
|
|
always produces the same, distinctive path, it's highly likely that
|
|
"IHDR" is an atomically-checked magic value of special significance to
|
|
the fuzzed format.
|
|
|
|
We do this here, rather than as a separate stage, because it's a nice
|
|
way to keep the operation approximately "free" (i.e., no extra execs).
|
|
|
|
Empirically, performing the check when flipping the least significant bit
|
|
is advantageous, compared to doing it at the time of more disruptive
|
|
changes, where the program flow may be affected in more violent ways.
|
|
|
|
The caveat is that we won't generate dictionaries in the -d mode or -S
|
|
mode - but that's probably a fair trade-off.
|
|
|
|
This won't work particularly well with paths that exhibit variable
|
|
behavior, but fails gracefully, so we'll carry out the checks anyway.
|
|
|
|
*/
|
|
|
|
if (!dumb_mode && (stage_cur & 7) == 7) {
|
|
|
|
u32 cksum = hash32(trace_bits, MAP_SIZE, HASH_CONST);
|
|
|
|
if (stage_cur == stage_max - 1 && cksum == prev_cksum) {
|
|
|
|
/* If at end of file and we are still collecting a string, grab the
|
|
final character and force output. */
|
|
|
|
if (a_len < MAX_AUTO_EXTRA) a_collect[a_len] = out_buf[stage_cur >> 3];
|
|
++a_len;
|
|
|
|
if (a_len >= MIN_AUTO_EXTRA && a_len <= MAX_AUTO_EXTRA)
|
|
maybe_add_auto(a_collect, a_len);
|
|
|
|
} else if (cksum != prev_cksum) {
|
|
|
|
/* Otherwise, if the checksum has changed, see if we have something
|
|
worthwhile queued up, and collect that if the answer is yes. */
|
|
|
|
if (a_len >= MIN_AUTO_EXTRA && a_len <= MAX_AUTO_EXTRA)
|
|
maybe_add_auto(a_collect, a_len);
|
|
|
|
a_len = 0;
|
|
prev_cksum = cksum;
|
|
|
|
}
|
|
|
|
/* Continue collecting string, but only if the bit flip actually made
|
|
any difference - we don't want no-op tokens. */
|
|
|
|
if (cksum != queue_cur->exec_cksum) {
|
|
|
|
if (a_len < MAX_AUTO_EXTRA) a_collect[a_len] = out_buf[stage_cur >> 3];
|
|
++a_len;
|
|
|
|
}
|
|
|
|
} /* if (stage_cur & 7) == 7 */
|
|
|
|
} /* for stage_cur */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP1] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP1] += stage_max;
|
|
|
|
/* Two walking bits. */
|
|
|
|
stage_name = "bitflip 2/1";
|
|
stage_short = "flip2";
|
|
stage_max = (len << 3) - 1;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) {
|
|
|
|
stage_cur_byte = stage_cur >> 3;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
FLIP_BIT(out_buf, stage_cur + 1);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
FLIP_BIT(out_buf, stage_cur + 1);
|
|
|
|
} /* for stage_cur */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP2] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP2] += stage_max;
|
|
|
|
/* Four walking bits. */
|
|
|
|
stage_name = "bitflip 4/1";
|
|
stage_short = "flip4";
|
|
stage_max = (len << 3) - 3;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) {
|
|
|
|
stage_cur_byte = stage_cur >> 3;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
FLIP_BIT(out_buf, stage_cur + 1);
|
|
FLIP_BIT(out_buf, stage_cur + 2);
|
|
FLIP_BIT(out_buf, stage_cur + 3);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
FLIP_BIT(out_buf, stage_cur + 1);
|
|
FLIP_BIT(out_buf, stage_cur + 2);
|
|
FLIP_BIT(out_buf, stage_cur + 3);
|
|
|
|
} /* for stage_cur */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP4] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP4] += stage_max;
|
|
|
|
/* Effector map setup. These macros calculate:
|
|
|
|
EFF_APOS - position of a particular file offset in the map.
|
|
EFF_ALEN - length of a map with a particular number of bytes.
|
|
EFF_SPAN_ALEN - map span for a sequence of bytes.
|
|
|
|
*/
|
|
|
|
#define EFF_APOS(_p) ((_p) >> EFF_MAP_SCALE2)
|
|
#define EFF_REM(_x) ((_x) & ((1 << EFF_MAP_SCALE2) - 1))
|
|
#define EFF_ALEN(_l) (EFF_APOS(_l) + !!EFF_REM(_l))
|
|
#define EFF_SPAN_ALEN(_p, _l) (EFF_APOS((_p) + (_l)-1) - EFF_APOS(_p) + 1)
|
|
|
|
/* Initialize effector map for the next step (see comments below). Always
|
|
flag first and last byte as doing something. */
|
|
|
|
eff_map = ck_alloc(EFF_ALEN(len));
|
|
eff_map[0] = 1;
|
|
|
|
if (EFF_APOS(len - 1) != 0) {
|
|
|
|
eff_map[EFF_APOS(len - 1)] = 1;
|
|
++eff_cnt;
|
|
|
|
}
|
|
|
|
/* Walking byte. */
|
|
|
|
stage_name = "bitflip 8/8";
|
|
stage_short = "flip8";
|
|
stage_max = len;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) {
|
|
|
|
stage_cur_byte = stage_cur;
|
|
|
|
out_buf[stage_cur] ^= 0xFF;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
/* We also use this stage to pull off a simple trick: we identify
|
|
bytes that seem to have no effect on the current execution path
|
|
even when fully flipped - and we skip them during more expensive
|
|
deterministic stages, such as arithmetics or known ints. */
|
|
|
|
if (!eff_map[EFF_APOS(stage_cur)]) {
|
|
|
|
u32 cksum;
|
|
|
|
/* If in dumb mode or if the file is very short, just flag everything
|
|
without wasting time on checksums. */
|
|
|
|
if (!dumb_mode && len >= EFF_MIN_LEN)
|
|
cksum = hash32(trace_bits, MAP_SIZE, HASH_CONST);
|
|
else
|
|
cksum = ~queue_cur->exec_cksum;
|
|
|
|
if (cksum != queue_cur->exec_cksum) {
|
|
|
|
eff_map[EFF_APOS(stage_cur)] = 1;
|
|
++eff_cnt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out_buf[stage_cur] ^= 0xFF;
|
|
|
|
} /* for stage_cur */
|
|
|
|
/* If the effector map is more than EFF_MAX_PERC dense, just flag the
|
|
whole thing as worth fuzzing, since we wouldn't be saving much time
|
|
anyway. */
|
|
|
|
if (eff_cnt != EFF_ALEN(len) &&
|
|
eff_cnt * 100 / EFF_ALEN(len) > EFF_MAX_PERC) {
|
|
|
|
memset(eff_map, 1, EFF_ALEN(len));
|
|
|
|
blocks_eff_select += EFF_ALEN(len);
|
|
|
|
} else {
|
|
|
|
blocks_eff_select += eff_cnt;
|
|
|
|
}
|
|
|
|
blocks_eff_total += EFF_ALEN(len);
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP8] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP8] += stage_max;
|
|
|
|
/* Two walking bytes. */
|
|
|
|
if (len < 2) goto skip_bitflip;
|
|
|
|
stage_name = "bitflip 16/8";
|
|
stage_short = "flip16";
|
|
stage_cur = 0;
|
|
stage_max = len - 1;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 1; ++i) {
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)]) {
|
|
|
|
--stage_max;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
*(u16*)(out_buf + i) ^= 0xFFFF;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
*(u16*)(out_buf + i) ^= 0xFFFF;
|
|
|
|
} /* for i = 0; i < len */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP16] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP16] += stage_max;
|
|
|
|
if (len < 4) goto skip_bitflip;
|
|
|
|
/* Four walking bytes. */
|
|
|
|
stage_name = "bitflip 32/8";
|
|
stage_short = "flip32";
|
|
stage_cur = 0;
|
|
stage_max = len - 3;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 3; ++i) {
|
|
|
|
/* Let's consult the effector map... */
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)] &&
|
|
!eff_map[EFF_APOS(i + 2)] && !eff_map[EFF_APOS(i + 3)]) {
|
|
|
|
--stage_max;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
*(u32*)(out_buf + i) ^= 0xFFFFFFFF;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
*(u32*)(out_buf + i) ^= 0xFFFFFFFF;
|
|
|
|
} /* for i = 0; i < len - 3 */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP32] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP32] += stage_max;
|
|
|
|
skip_bitflip:
|
|
|
|
if (no_arith) goto skip_arith;
|
|
|
|
/**********************
|
|
* ARITHMETIC INC/DEC *
|
|
**********************/
|
|
|
|
/* 8-bit arithmetics. */
|
|
|
|
stage_name = "arith 8/8";
|
|
stage_short = "arith8";
|
|
stage_cur = 0;
|
|
stage_max = 2 * len * ARITH_MAX;
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
|
|
u8 orig = out_buf[i];
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)]) {
|
|
|
|
stage_max -= 2 * ARITH_MAX;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 1; j <= ARITH_MAX; ++j) {
|
|
|
|
u8 r = orig ^ (orig + j);
|
|
|
|
/* Do arithmetic operations only if the result couldn't be a product
|
|
of a bitflip. */
|
|
|
|
if (!could_be_bitflip(r)) {
|
|
|
|
stage_cur_val = j;
|
|
out_buf[i] = orig + j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
r = orig ^ (orig - j);
|
|
|
|
if (!could_be_bitflip(r)) {
|
|
|
|
stage_cur_val = -j;
|
|
out_buf[i] = orig - j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
out_buf[i] = orig;
|
|
|
|
}
|
|
|
|
} /* for i = 0; i < len */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_ARITH8] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_ARITH8] += stage_max;
|
|
|
|
/* 16-bit arithmetics, both endians. */
|
|
|
|
if (len < 2) goto skip_arith;
|
|
|
|
stage_name = "arith 16/8";
|
|
stage_short = "arith16";
|
|
stage_cur = 0;
|
|
stage_max = 4 * (len - 1) * ARITH_MAX;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 1; ++i) {
|
|
|
|
u16 orig = *(u16*)(out_buf + i);
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)]) {
|
|
|
|
stage_max -= 4 * ARITH_MAX;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 1; j <= ARITH_MAX; ++j) {
|
|
|
|
u16 r1 = orig ^ (orig + j), r2 = orig ^ (orig - j),
|
|
r3 = orig ^ SWAP16(SWAP16(orig) + j),
|
|
r4 = orig ^ SWAP16(SWAP16(orig) - j);
|
|
|
|
/* Try little endian addition and subtraction first. Do it only
|
|
if the operation would affect more than one byte (hence the
|
|
& 0xff overflow checks) and if it couldn't be a product of
|
|
a bitflip. */
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
if ((orig & 0xff) + j > 0xff && !could_be_bitflip(r1)) {
|
|
|
|
stage_cur_val = j;
|
|
*(u16*)(out_buf + i) = orig + j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
if ((orig & 0xff) < j && !could_be_bitflip(r2)) {
|
|
|
|
stage_cur_val = -j;
|
|
*(u16*)(out_buf + i) = orig - j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
/* Big endian comes next. Same deal. */
|
|
|
|
stage_val_type = STAGE_VAL_BE;
|
|
|
|
if ((orig >> 8) + j > 0xff && !could_be_bitflip(r3)) {
|
|
|
|
stage_cur_val = j;
|
|
*(u16*)(out_buf + i) = SWAP16(SWAP16(orig) + j);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
if ((orig >> 8) < j && !could_be_bitflip(r4)) {
|
|
|
|
stage_cur_val = -j;
|
|
*(u16*)(out_buf + i) = SWAP16(SWAP16(orig) - j);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
*(u16*)(out_buf + i) = orig;
|
|
|
|
}
|
|
|
|
} /* for i = 0; i < len - 1 */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_ARITH16] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_ARITH16] += stage_max;
|
|
|
|
/* 32-bit arithmetics, both endians. */
|
|
|
|
if (len < 4) goto skip_arith;
|
|
|
|
stage_name = "arith 32/8";
|
|
stage_short = "arith32";
|
|
stage_cur = 0;
|
|
stage_max = 4 * (len - 3) * ARITH_MAX;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 3; ++i) {
|
|
|
|
u32 orig = *(u32*)(out_buf + i);
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)] &&
|
|
!eff_map[EFF_APOS(i + 2)] && !eff_map[EFF_APOS(i + 3)]) {
|
|
|
|
stage_max -= 4 * ARITH_MAX;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 1; j <= ARITH_MAX; ++j) {
|
|
|
|
u32 r1 = orig ^ (orig + j), r2 = orig ^ (orig - j),
|
|
r3 = orig ^ SWAP32(SWAP32(orig) + j),
|
|
r4 = orig ^ SWAP32(SWAP32(orig) - j);
|
|
|
|
/* Little endian first. Same deal as with 16-bit: we only want to
|
|
try if the operation would have effect on more than two bytes. */
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
if ((orig & 0xffff) + j > 0xffff && !could_be_bitflip(r1)) {
|
|
|
|
stage_cur_val = j;
|
|
*(u32*)(out_buf + i) = orig + j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
if ((orig & 0xffff) < j && !could_be_bitflip(r2)) {
|
|
|
|
stage_cur_val = -j;
|
|
*(u32*)(out_buf + i) = orig - j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
/* Big endian next. */
|
|
|
|
stage_val_type = STAGE_VAL_BE;
|
|
|
|
if ((SWAP32(orig) & 0xffff) + j > 0xffff && !could_be_bitflip(r3)) {
|
|
|
|
stage_cur_val = j;
|
|
*(u32*)(out_buf + i) = SWAP32(SWAP32(orig) + j);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
if ((SWAP32(orig) & 0xffff) < j && !could_be_bitflip(r4)) {
|
|
|
|
stage_cur_val = -j;
|
|
*(u32*)(out_buf + i) = SWAP32(SWAP32(orig) - j);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
*(u32*)(out_buf + i) = orig;
|
|
|
|
}
|
|
|
|
} /* for i = 0; i < len - 3 */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_ARITH32] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_ARITH32] += stage_max;
|
|
|
|
skip_arith:
|
|
|
|
/**********************
|
|
* INTERESTING VALUES *
|
|
**********************/
|
|
|
|
stage_name = "interest 8/8";
|
|
stage_short = "int8";
|
|
stage_cur = 0;
|
|
stage_max = len * sizeof(interesting_8);
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
/* Setting 8-bit integers. */
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
|
|
u8 orig = out_buf[i];
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)]) {
|
|
|
|
stage_max -= sizeof(interesting_8);
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < sizeof(interesting_8); ++j) {
|
|
|
|
/* Skip if the value could be a product of bitflips or arithmetics. */
|
|
|
|
if (could_be_bitflip(orig ^ (u8)interesting_8[j]) ||
|
|
could_be_arith(orig, (u8)interesting_8[j], 1)) {
|
|
|
|
--stage_max;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_val = interesting_8[j];
|
|
out_buf[i] = interesting_8[j];
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
out_buf[i] = orig;
|
|
++stage_cur;
|
|
|
|
}
|
|
|
|
} /* for i = 0; i < len */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_INTEREST8] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_INTEREST8] += stage_max;
|
|
|
|
/* Setting 16-bit integers, both endians. */
|
|
|
|
if (no_arith || len < 2) goto skip_interest;
|
|
|
|
stage_name = "interest 16/8";
|
|
stage_short = "int16";
|
|
stage_cur = 0;
|
|
stage_max = 2 * (len - 1) * (sizeof(interesting_16) >> 1);
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 1; ++i) {
|
|
|
|
u16 orig = *(u16*)(out_buf + i);
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)]) {
|
|
|
|
stage_max -= sizeof(interesting_16);
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < sizeof(interesting_16) / 2; ++j) {
|
|
|
|
stage_cur_val = interesting_16[j];
|
|
|
|
/* Skip if this could be a product of a bitflip, arithmetics,
|
|
or single-byte interesting value insertion. */
|
|
|
|
if (!could_be_bitflip(orig ^ (u16)interesting_16[j]) &&
|
|
!could_be_arith(orig, (u16)interesting_16[j], 2) &&
|
|
!could_be_interest(orig, (u16)interesting_16[j], 2, 0)) {
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
*(u16*)(out_buf + i) = interesting_16[j];
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
if ((u16)interesting_16[j] != SWAP16(interesting_16[j]) &&
|
|
!could_be_bitflip(orig ^ SWAP16(interesting_16[j])) &&
|
|
!could_be_arith(orig, SWAP16(interesting_16[j]), 2) &&
|
|
!could_be_interest(orig, SWAP16(interesting_16[j]), 2, 1)) {
|
|
|
|
stage_val_type = STAGE_VAL_BE;
|
|
|
|
*(u16*)(out_buf + i) = SWAP16(interesting_16[j]);
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
}
|
|
|
|
*(u16*)(out_buf + i) = orig;
|
|
|
|
} /* for i = 0; i < len - 1 */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_INTEREST16] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_INTEREST16] += stage_max;
|
|
|
|
if (len < 4) goto skip_interest;
|
|
|
|
/* Setting 32-bit integers, both endians. */
|
|
|
|
stage_name = "interest 32/8";
|
|
stage_short = "int32";
|
|
stage_cur = 0;
|
|
stage_max = 2 * (len - 3) * (sizeof(interesting_32) >> 2);
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 3; ++i) {
|
|
|
|
u32 orig = *(u32*)(out_buf + i);
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)] &&
|
|
!eff_map[EFF_APOS(i + 2)] && !eff_map[EFF_APOS(i + 3)]) {
|
|
|
|
stage_max -= sizeof(interesting_32) >> 1;
|
|
continue;
|
|
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < sizeof(interesting_32) / 4; ++j) {
|
|
|
|
stage_cur_val = interesting_32[j];
|
|
|
|
/* Skip if this could be a product of a bitflip, arithmetics,
|
|
or word interesting value insertion. */
|
|
|
|
if (!could_be_bitflip(orig ^ (u32)interesting_32[j]) &&
|
|
!could_be_arith(orig, interesting_32[j], 4) &&
|
|
!could_be_interest(orig, interesting_32[j], 4, 0)) {
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
*(u32*)(out_buf + i) = interesting_32[j];
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
if ((u32)interesting_32[j] != SWAP32(interesting_32[j]) &&
|
|
!could_be_bitflip(orig ^ SWAP32(interesting_32[j])) &&
|
|
!could_be_arith(orig, SWAP32(interesting_32[j]), 4) &&
|
|
!could_be_interest(orig, SWAP32(interesting_32[j]), 4, 1)) {
|
|
|
|
stage_val_type = STAGE_VAL_BE;
|
|
|
|
*(u32*)(out_buf + i) = SWAP32(interesting_32[j]);
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
++stage_cur;
|
|
|
|
} else
|
|
|
|
--stage_max;
|
|
|
|
}
|
|
|
|
*(u32*)(out_buf + i) = orig;
|
|
|
|
} /* for i = 0; i < len - 3 */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_INTEREST32] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_INTEREST32] += stage_max;
|
|
|
|
skip_interest:
|
|
|
|
/********************
|
|
* DICTIONARY STUFF *
|
|
********************/
|
|
|
|
if (!extras_cnt) goto skip_user_extras;
|
|
|
|
/* Overwrite with user-supplied extras. */
|
|
|
|
stage_name = "user extras (over)";
|
|
stage_short = "ext_UO";
|
|
stage_cur = 0;
|
|
stage_max = extras_cnt * len;
|
|
|
|
stage_val_type = STAGE_VAL_NONE;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
|
|
u32 last_len = 0;
|
|
|
|
stage_cur_byte = i;
|
|
|
|
/* Extras are sorted by size, from smallest to largest. This means
|
|
that we don't have to worry about restoring the buffer in
|
|
between writes at a particular offset determined by the outer
|
|
loop. */
|
|
|
|
for (j = 0; j < extras_cnt; ++j) {
|
|
|
|
/* Skip extras probabilistically if extras_cnt > MAX_DET_EXTRAS. Also
|
|
skip them if there's no room to insert the payload, if the token
|
|
is redundant, or if its entire span has no bytes set in the effector
|
|
map. */
|
|
|
|
if ((extras_cnt > MAX_DET_EXTRAS && UR(extras_cnt) >= MAX_DET_EXTRAS) ||
|
|
extras[j].len > len - i ||
|
|
!memcmp(extras[j].data, out_buf + i, extras[j].len) ||
|
|
!memchr(eff_map + EFF_APOS(i), 1, EFF_SPAN_ALEN(i, extras[j].len))) {
|
|
|
|
--stage_max;
|
|
continue;
|
|
|
|
}
|
|
|
|
last_len = extras[j].len;
|
|
memcpy(out_buf + i, extras[j].data, last_len);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
++stage_cur;
|
|
|
|
}
|
|
|
|
/* Restore all the clobbered memory. */
|
|
memcpy(out_buf + i, in_buf + i, last_len);
|
|
|
|
} /* for i = 0; i < len */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_EXTRAS_UO] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_EXTRAS_UO] += stage_max;
|
|
|
|
/* Insertion of user-supplied extras. */
|
|
|
|
stage_name = "user extras (insert)";
|
|
stage_short = "ext_UI";
|
|
stage_cur = 0;
|
|
stage_max = extras_cnt * len;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
ex_tmp = ck_alloc(len + MAX_DICT_FILE);
|
|
|
|
for (i = 0; i <= len; ++i) {
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < extras_cnt; ++j) {
|
|
|
|
if (len + extras[j].len > MAX_FILE) {
|
|
|
|
--stage_max;
|
|
continue;
|
|
|
|
}
|
|
|
|
/* Insert token */
|
|
memcpy(ex_tmp + i, extras[j].data, extras[j].len);
|
|
|
|
/* Copy tail */
|
|
memcpy(ex_tmp + i + extras[j].len, out_buf + i, len - i);
|
|
|
|
if (common_fuzz_stuff(argv, ex_tmp, len + extras[j].len)) {
|
|
|
|
ck_free(ex_tmp);
|
|
goto abandon_entry;
|
|
|
|
}
|
|
|
|
++stage_cur;
|
|
|
|
}
|
|
|
|
/* Copy head */
|
|
ex_tmp[i] = out_buf[i];
|
|
|
|
} /* for i = 0; i <= len */
|
|
|
|
ck_free(ex_tmp);
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_EXTRAS_UI] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_EXTRAS_UI] += stage_max;
|
|
|
|
skip_user_extras:
|
|
|
|
if (!a_extras_cnt) goto skip_extras;
|
|
|
|
stage_name = "auto extras (over)";
|
|
stage_short = "ext_AO";
|
|
stage_cur = 0;
|
|
stage_max = MIN(a_extras_cnt, USE_AUTO_EXTRAS) * len;
|
|
|
|
stage_val_type = STAGE_VAL_NONE;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
|
|
u32 last_len = 0;
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < MIN(a_extras_cnt, USE_AUTO_EXTRAS); ++j) {
|
|
|
|
/* See the comment in the earlier code; extras are sorted by size. */
|
|
|
|
if (a_extras[j].len > len - i ||
|
|
!memcmp(a_extras[j].data, out_buf + i, a_extras[j].len) ||
|
|
!memchr(eff_map + EFF_APOS(i), 1,
|
|
EFF_SPAN_ALEN(i, a_extras[j].len))) {
|
|
|
|
--stage_max;
|
|
continue;
|
|
|
|
}
|
|
|
|
last_len = a_extras[j].len;
|
|
memcpy(out_buf + i, a_extras[j].data, last_len);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
++stage_cur;
|
|
|
|
}
|
|
|
|
/* Restore all the clobbered memory. */
|
|
memcpy(out_buf + i, in_buf + i, last_len);
|
|
|
|
} /* for i = 0; i < len */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_EXTRAS_AO] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_EXTRAS_AO] += stage_max;
|
|
|
|
skip_extras:
|
|
|
|
/* If we made this to here without jumping to havoc_stage or abandon_entry,
|
|
we're properly done with deterministic steps and can mark it as such
|
|
in the .state/ directory. */
|
|
|
|
if (!queue_cur->passed_det) mark_as_det_done(queue_cur);
|
|
|
|
/****************
|
|
* RANDOM HAVOC *
|
|
****************/
|
|
|
|
havoc_stage:
|
|
pacemaker_fuzzing:
|
|
|
|
stage_cur_byte = -1;
|
|
|
|
/* The havoc stage mutation code is also invoked when splicing files; if the
|
|
splice_cycle variable is set, generate different descriptions and such. */
|
|
|
|
if (!splice_cycle) {
|
|
|
|
stage_name = MOpt_globals.havoc_stagename;
|
|
stage_short = MOpt_globals.havoc_stagenameshort;
|
|
stage_max = (doing_det ? HAVOC_CYCLES_INIT : HAVOC_CYCLES) * perf_score /
|
|
havoc_div / 100;
|
|
|
|
} else {
|
|
|
|
static u8 tmp[32];
|
|
|
|
perf_score = orig_perf;
|
|
|
|
sprintf(tmp, MOpt_globals.splice_stageformat, splice_cycle);
|
|
stage_name = tmp;
|
|
stage_short = MOpt_globals.splice_stagenameshort;
|
|
stage_max = SPLICE_HAVOC * perf_score / havoc_div / 100;
|
|
|
|
}
|
|
|
|
s32 temp_len_puppet;
|
|
cur_ms_lv = get_cur_time();
|
|
|
|
// for (; swarm_now < swarm_num; ++swarm_now)
|
|
{
|
|
|
|
if (key_puppet == 1) {
|
|
|
|
if (unlikely(orig_hit_cnt_puppet == 0)) {
|
|
|
|
orig_hit_cnt_puppet = queued_paths + unique_crashes;
|
|
last_limit_time_start = get_cur_time();
|
|
SPLICE_CYCLES_puppet =
|
|
(UR(SPLICE_CYCLES_puppet_up - SPLICE_CYCLES_puppet_low + 1) +
|
|
SPLICE_CYCLES_puppet_low);
|
|
|
|
}
|
|
|
|
} /* if key_puppet == 1 */
|
|
|
|
{
|
|
|
|
#ifndef IGNORE_FINDS
|
|
havoc_stage_puppet:
|
|
#endif
|
|
|
|
stage_cur_byte = -1;
|
|
|
|
/* The havoc stage mutation code is also invoked when splicing files; if
|
|
the splice_cycle variable is set, generate different descriptions and
|
|
such. */
|
|
|
|
if (!splice_cycle) {
|
|
|
|
stage_name = MOpt_globals.havoc_stagename;
|
|
stage_short = MOpt_globals.havoc_stagenameshort;
|
|
stage_max = (doing_det ? HAVOC_CYCLES_INIT : HAVOC_CYCLES) *
|
|
perf_score / havoc_div / 100;
|
|
|
|
} else {
|
|
|
|
static u8 tmp[32];
|
|
perf_score = orig_perf;
|
|
sprintf(tmp, MOpt_globals.splice_stageformat, splice_cycle);
|
|
stage_name = tmp;
|
|
stage_short = MOpt_globals.splice_stagenameshort;
|
|
stage_max = SPLICE_HAVOC * perf_score / havoc_div / 100;
|
|
|
|
}
|
|
|
|
if (stage_max < HAVOC_MIN) stage_max = HAVOC_MIN;
|
|
|
|
temp_len = len;
|
|
|
|
orig_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
havoc_queued = queued_paths;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) {
|
|
|
|
u32 use_stacking = 1 << (1 + UR(HAVOC_STACK_POW2));
|
|
|
|
stage_cur_val = use_stacking;
|
|
|
|
for (i = 0; i < operator_num; ++i) {
|
|
|
|
MOpt_globals.cycles_v3[i] = MOpt_globals.cycles_v2[i];
|
|
|
|
}
|
|
|
|
for (i = 0; i < use_stacking; ++i) {
|
|
|
|
switch (select_algorithm()) {
|
|
|
|
case 0:
|
|
/* Flip a single bit somewhere. Spooky! */
|
|
FLIP_BIT(out_buf, UR(temp_len << 3));
|
|
MOpt_globals.cycles_v2[STAGE_FLIP1] += 1;
|
|
break;
|
|
|
|
case 1:
|
|
if (temp_len < 2) break;
|
|
temp_len_puppet = UR(temp_len << 3);
|
|
FLIP_BIT(out_buf, temp_len_puppet);
|
|
FLIP_BIT(out_buf, temp_len_puppet + 1);
|
|
MOpt_globals.cycles_v2[STAGE_FLIP2] += 1;
|
|
break;
|
|
|
|
case 2:
|
|
if (temp_len < 2) break;
|
|
temp_len_puppet = UR(temp_len << 3);
|
|
FLIP_BIT(out_buf, temp_len_puppet);
|
|
FLIP_BIT(out_buf, temp_len_puppet + 1);
|
|
FLIP_BIT(out_buf, temp_len_puppet + 2);
|
|
FLIP_BIT(out_buf, temp_len_puppet + 3);
|
|
MOpt_globals.cycles_v2[STAGE_FLIP4] += 1;
|
|
break;
|
|
|
|
case 3:
|
|
if (temp_len < 4) break;
|
|
out_buf[UR(temp_len)] ^= 0xFF;
|
|
MOpt_globals.cycles_v2[STAGE_FLIP8] += 1;
|
|
break;
|
|
|
|
case 4:
|
|
if (temp_len < 8) break;
|
|
*(u16*)(out_buf + UR(temp_len - 1)) ^= 0xFFFF;
|
|
MOpt_globals.cycles_v2[STAGE_FLIP16] += 1;
|
|
break;
|
|
|
|
case 5:
|
|
if (temp_len < 8) break;
|
|
*(u32*)(out_buf + UR(temp_len - 3)) ^= 0xFFFFFFFF;
|
|
MOpt_globals.cycles_v2[STAGE_FLIP32] += 1;
|
|
break;
|
|
|
|
case 6:
|
|
out_buf[UR(temp_len)] -= 1 + UR(ARITH_MAX);
|
|
out_buf[UR(temp_len)] += 1 + UR(ARITH_MAX);
|
|
MOpt_globals.cycles_v2[STAGE_ARITH8] += 1;
|
|
break;
|
|
|
|
case 7:
|
|
/* Randomly subtract from word, random endian. */
|
|
if (temp_len < 8) break;
|
|
if (UR(2)) {
|
|
|
|
u32 pos = UR(temp_len - 1);
|
|
*(u16*)(out_buf + pos) -= 1 + UR(ARITH_MAX);
|
|
|
|
} else {
|
|
|
|
u32 pos = UR(temp_len - 1);
|
|
u16 num = 1 + UR(ARITH_MAX);
|
|
*(u16*)(out_buf + pos) =
|
|
SWAP16(SWAP16(*(u16*)(out_buf + pos)) - num);
|
|
|
|
}
|
|
|
|
/* Randomly add to word, random endian. */
|
|
if (UR(2)) {
|
|
|
|
u32 pos = UR(temp_len - 1);
|
|
*(u16*)(out_buf + pos) += 1 + UR(ARITH_MAX);
|
|
|
|
} else {
|
|
|
|
u32 pos = UR(temp_len - 1);
|
|
u16 num = 1 + UR(ARITH_MAX);
|
|
*(u16*)(out_buf + pos) =
|
|
SWAP16(SWAP16(*(u16*)(out_buf + pos)) + num);
|
|
|
|
}
|
|
|
|
MOpt_globals.cycles_v2[STAGE_ARITH16] += 1;
|
|
break;
|
|
|
|
case 8:
|
|
/* Randomly subtract from dword, random endian. */
|
|
if (temp_len < 8) break;
|
|
if (UR(2)) {
|
|
|
|
u32 pos = UR(temp_len - 3);
|
|
*(u32*)(out_buf + pos) -= 1 + UR(ARITH_MAX);
|
|
|
|
} else {
|
|
|
|
u32 pos = UR(temp_len - 3);
|
|
u32 num = 1 + UR(ARITH_MAX);
|
|
*(u32*)(out_buf + pos) =
|
|
SWAP32(SWAP32(*(u32*)(out_buf + pos)) - num);
|
|
|
|
}
|
|
|
|
/* Randomly add to dword, random endian. */
|
|
// if (temp_len < 4) break;
|
|
if (UR(2)) {
|
|
|
|
u32 pos = UR(temp_len - 3);
|
|
*(u32*)(out_buf + pos) += 1 + UR(ARITH_MAX);
|
|
|
|
} else {
|
|
|
|
u32 pos = UR(temp_len - 3);
|
|
u32 num = 1 + UR(ARITH_MAX);
|
|
*(u32*)(out_buf + pos) =
|
|
SWAP32(SWAP32(*(u32*)(out_buf + pos)) + num);
|
|
|
|
}
|
|
|
|
MOpt_globals.cycles_v2[STAGE_ARITH32] += 1;
|
|
break;
|
|
|
|
case 9:
|
|
/* Set byte to interesting value. */
|
|
if (temp_len < 4) break;
|
|
out_buf[UR(temp_len)] = interesting_8[UR(sizeof(interesting_8))];
|
|
MOpt_globals.cycles_v2[STAGE_INTEREST8] += 1;
|
|
break;
|
|
|
|
case 10:
|
|
/* Set word to interesting value, randomly choosing endian. */
|
|
if (temp_len < 8) break;
|
|
if (UR(2)) {
|
|
|
|
*(u16*)(out_buf + UR(temp_len - 1)) =
|
|
interesting_16[UR(sizeof(interesting_16) >> 1)];
|
|
|
|
} else {
|
|
|
|
*(u16*)(out_buf + UR(temp_len - 1)) =
|
|
SWAP16(interesting_16[UR(sizeof(interesting_16) >> 1)]);
|
|
|
|
}
|
|
|
|
MOpt_globals.cycles_v2[STAGE_INTEREST16] += 1;
|
|
break;
|
|
|
|
case 11:
|
|
/* Set dword to interesting value, randomly choosing endian. */
|
|
|
|
if (temp_len < 8) break;
|
|
|
|
if (UR(2)) {
|
|
|
|
*(u32*)(out_buf + UR(temp_len - 3)) =
|
|
interesting_32[UR(sizeof(interesting_32) >> 2)];
|
|
|
|
} else {
|
|
|
|
*(u32*)(out_buf + UR(temp_len - 3)) =
|
|
SWAP32(interesting_32[UR(sizeof(interesting_32) >> 2)]);
|
|
|
|
}
|
|
|
|
MOpt_globals.cycles_v2[STAGE_INTEREST32] += 1;
|
|
break;
|
|
|
|
case 12:
|
|
|
|
/* Just set a random byte to a random value. Because,
|
|
why not. We use XOR with 1-255 to eliminate the
|
|
possibility of a no-op. */
|
|
|
|
out_buf[UR(temp_len)] ^= 1 + UR(255);
|
|
MOpt_globals.cycles_v2[STAGE_RANDOMBYTE] += 1;
|
|
break;
|
|
|
|
case 13: {
|
|
|
|
/* Delete bytes. We're making this a bit more likely
|
|
than insertion (the next option) in hopes of keeping
|
|
files reasonably small. */
|
|
|
|
u32 del_from, del_len;
|
|
|
|
if (temp_len < 2) break;
|
|
|
|
/* Don't delete too much. */
|
|
|
|
del_len = choose_block_len(temp_len - 1);
|
|
|
|
del_from = UR(temp_len - del_len + 1);
|
|
|
|
memmove(out_buf + del_from, out_buf + del_from + del_len,
|
|
temp_len - del_from - del_len);
|
|
|
|
temp_len -= del_len;
|
|
MOpt_globals.cycles_v2[STAGE_DELETEBYTE] += 1;
|
|
break;
|
|
|
|
}
|
|
|
|
case 14:
|
|
|
|
if (temp_len + HAVOC_BLK_XL < MAX_FILE) {
|
|
|
|
/* Clone bytes (75%) or insert a block of constant bytes (25%).
|
|
*/
|
|
|
|
u8 actually_clone = UR(4);
|
|
u32 clone_from, clone_to, clone_len;
|
|
u8* new_buf;
|
|
|
|
if (actually_clone) {
|
|
|
|
clone_len = choose_block_len(temp_len);
|
|
clone_from = UR(temp_len - clone_len + 1);
|
|
|
|
} else {
|
|
|
|
clone_len = choose_block_len(HAVOC_BLK_XL);
|
|
clone_from = 0;
|
|
|
|
}
|
|
|
|
clone_to = UR(temp_len);
|
|
|
|
new_buf = ck_alloc_nozero(temp_len + clone_len);
|
|
|
|
/* Head */
|
|
|
|
memcpy(new_buf, out_buf, clone_to);
|
|
|
|
/* Inserted part */
|
|
|
|
if (actually_clone)
|
|
memcpy(new_buf + clone_to, out_buf + clone_from, clone_len);
|
|
else
|
|
memset(new_buf + clone_to,
|
|
UR(2) ? UR(256) : out_buf[UR(temp_len)], clone_len);
|
|
|
|
/* Tail */
|
|
memcpy(new_buf + clone_to + clone_len, out_buf + clone_to,
|
|
temp_len - clone_to);
|
|
|
|
ck_free(out_buf);
|
|
out_buf = new_buf;
|
|
temp_len += clone_len;
|
|
MOpt_globals.cycles_v2[STAGE_Clone75] += 1;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 15: {
|
|
|
|
/* Overwrite bytes with a randomly selected chunk (75%) or fixed
|
|
bytes (25%). */
|
|
|
|
u32 copy_from, copy_to, copy_len;
|
|
|
|
if (temp_len < 2) break;
|
|
|
|
copy_len = choose_block_len(temp_len - 1);
|
|
|
|
copy_from = UR(temp_len - copy_len + 1);
|
|
copy_to = UR(temp_len - copy_len + 1);
|
|
|
|
if (UR(4)) {
|
|
|
|
if (copy_from != copy_to)
|
|
memmove(out_buf + copy_to, out_buf + copy_from, copy_len);
|
|
|
|
} else
|
|
|
|
memset(out_buf + copy_to,
|
|
UR(2) ? UR(256) : out_buf[UR(temp_len)], copy_len);
|
|
MOpt_globals.cycles_v2[STAGE_OverWrite75] += 1;
|
|
break;
|
|
|
|
} /* case 15 */
|
|
|
|
} /* switch select_algorithm() */
|
|
|
|
} /* for i=0; i < use_stacking */
|
|
|
|
*MOpt_globals.pTime += 1;
|
|
|
|
u64 temp_total_found = queued_paths + unique_crashes;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, temp_len))
|
|
goto abandon_entry_puppet;
|
|
|
|
/* out_buf might have been mangled a bit, so let's restore it to its
|
|
original size and shape. */
|
|
|
|
if (temp_len < len) out_buf = ck_realloc(out_buf, len);
|
|
temp_len = len;
|
|
memcpy(out_buf, in_buf, len);
|
|
|
|
/* If we're finding new stuff, let's run for a bit longer, limits
|
|
permitting. */
|
|
|
|
if (queued_paths != havoc_queued) {
|
|
|
|
if (perf_score <= havoc_max_mult * 100) {
|
|
|
|
stage_max *= 2;
|
|
perf_score *= 2;
|
|
|
|
}
|
|
|
|
havoc_queued = queued_paths;
|
|
|
|
}
|
|
|
|
if (unlikely(queued_paths + unique_crashes > temp_total_found)) {
|
|
|
|
u64 temp_temp_puppet =
|
|
queued_paths + unique_crashes - temp_total_found;
|
|
total_puppet_find = total_puppet_find + temp_temp_puppet;
|
|
for (i = 0; i < operator_num; ++i) {
|
|
|
|
if (MOpt_globals.cycles_v2[i] > MOpt_globals.cycles_v3[i])
|
|
MOpt_globals.finds_v2[i] += temp_temp_puppet;
|
|
|
|
}
|
|
|
|
} /* if */
|
|
|
|
} /* for (stage_cur = 0; stage_cur < stage_max; ++stage_cur) { */
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
if (MOpt_globals.is_pilot_mode) {
|
|
|
|
if (!splice_cycle) {
|
|
|
|
stage_finds[STAGE_HAVOC] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_HAVOC] += stage_max;
|
|
|
|
} else {
|
|
|
|
stage_finds[STAGE_SPLICE] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_SPLICE] += stage_max;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#ifndef IGNORE_FINDS
|
|
|
|
/************
|
|
* SPLICING *
|
|
************/
|
|
|
|
retry_splicing_puppet:
|
|
|
|
if (use_splicing && splice_cycle++ < SPLICE_CYCLES_puppet &&
|
|
queued_paths > 1 && queue_cur->len > 1) {
|
|
|
|
struct queue_entry* target;
|
|
u32 tid, split_at;
|
|
u8* new_buf;
|
|
s32 f_diff, l_diff;
|
|
|
|
/* First of all, if we've modified in_buf for havoc, let's clean that
|
|
up... */
|
|
|
|
if (in_buf != orig_in) {
|
|
|
|
ck_free(in_buf);
|
|
in_buf = orig_in;
|
|
len = queue_cur->len;
|
|
|
|
}
|
|
|
|
/* Pick a random queue entry and seek to it. Don't splice with yourself.
|
|
*/
|
|
|
|
do {
|
|
|
|
tid = UR(queued_paths);
|
|
|
|
} while (tid == current_entry);
|
|
|
|
splicing_with = tid;
|
|
target = queue;
|
|
|
|
while (tid >= 100) {
|
|
|
|
target = target->next_100;
|
|
tid -= 100;
|
|
|
|
}
|
|
|
|
while (tid--)
|
|
target = target->next;
|
|
|
|
/* Make sure that the target has a reasonable length. */
|
|
|
|
while (target && (target->len < 2 || target == queue_cur)) {
|
|
|
|
target = target->next;
|
|
++splicing_with;
|
|
|
|
}
|
|
|
|
if (!target) goto retry_splicing_puppet;
|
|
|
|
/* Read the testcase into a new buffer. */
|
|
|
|
fd = open(target->fname, O_RDONLY);
|
|
|
|
if (fd < 0) PFATAL("Unable to open '%s'", target->fname);
|
|
|
|
new_buf = ck_alloc_nozero(target->len);
|
|
|
|
ck_read(fd, new_buf, target->len, target->fname);
|
|
|
|
close(fd);
|
|
|
|
/* Find a suitable splicin g location, somewhere between the first and
|
|
the last differing byte. Bail out if the difference is just a single
|
|
byte or so. */
|
|
|
|
locate_diffs(in_buf, new_buf, MIN(len, target->len), &f_diff, &l_diff);
|
|
|
|
if (f_diff < 0 || l_diff < 2 || f_diff == l_diff) {
|
|
|
|
ck_free(new_buf);
|
|
goto retry_splicing_puppet;
|
|
|
|
}
|
|
|
|
/* Split somewhere between the first and last differing byte. */
|
|
|
|
split_at = f_diff + UR(l_diff - f_diff);
|
|
|
|
/* Do the thing. */
|
|
|
|
len = target->len;
|
|
memcpy(new_buf, in_buf, split_at);
|
|
in_buf = new_buf;
|
|
ck_free(out_buf);
|
|
out_buf = ck_alloc_nozero(len);
|
|
memcpy(out_buf, in_buf, len);
|
|
|
|
goto havoc_stage_puppet;
|
|
|
|
} /* if splice_cycle */
|
|
|
|
#endif /* !IGNORE_FINDS */
|
|
|
|
ret_val = 0;
|
|
|
|
abandon_entry:
|
|
abandon_entry_puppet:
|
|
|
|
if (splice_cycle >= SPLICE_CYCLES_puppet)
|
|
SPLICE_CYCLES_puppet =
|
|
(UR(SPLICE_CYCLES_puppet_up - SPLICE_CYCLES_puppet_low + 1) +
|
|
SPLICE_CYCLES_puppet_low);
|
|
|
|
splicing_with = -1;
|
|
|
|
/* Update pending_not_fuzzed count if we made it through the calibration
|
|
cycle and have not seen this entry before. */
|
|
|
|
// if (!stop_soon && !queue_cur->cal_failed && !queue_cur->was_fuzzed) {
|
|
|
|
// queue_cur->was_fuzzed = 1;
|
|
// --pending_not_fuzzed;
|
|
// if (queue_cur->favored) --pending_favored;
|
|
// }
|
|
|
|
munmap(orig_in, queue_cur->len);
|
|
|
|
if (in_buf != orig_in) ck_free(in_buf);
|
|
ck_free(out_buf);
|
|
ck_free(eff_map);
|
|
|
|
if (key_puppet == 1) {
|
|
|
|
if (unlikely(queued_paths + unique_crashes >
|
|
((queued_paths + unique_crashes) * limit_time_bound +
|
|
orig_hit_cnt_puppet))) {
|
|
|
|
key_puppet = 0;
|
|
cur_ms_lv = get_cur_time();
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
orig_hit_cnt_puppet = 0;
|
|
last_limit_time_start = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (unlikely(*MOpt_globals.pTime > MOpt_globals.period)) {
|
|
|
|
total_pacemaker_time += *MOpt_globals.pTime;
|
|
*MOpt_globals.pTime = 0;
|
|
temp_puppet_find = total_puppet_find;
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
if (MOpt_globals.is_pilot_mode) {
|
|
|
|
swarm_fitness[swarm_now] =
|
|
(double)(total_puppet_find - temp_puppet_find) /
|
|
((double)(tmp_pilot_time) / period_pilot_tmp);
|
|
|
|
}
|
|
|
|
u64 temp_stage_finds_puppet = 0;
|
|
for (i = 0; i < operator_num; ++i) {
|
|
|
|
if (MOpt_globals.is_pilot_mode) {
|
|
|
|
double temp_eff = 0.0;
|
|
|
|
if (MOpt_globals.cycles_v2[i] > MOpt_globals.cycles[i])
|
|
temp_eff =
|
|
(double)(MOpt_globals.finds_v2[i] - MOpt_globals.finds[i]) /
|
|
(double)(MOpt_globals.cycles_v2[i] - MOpt_globals.cycles[i]);
|
|
|
|
if (eff_best[swarm_now][i] < temp_eff) {
|
|
|
|
eff_best[swarm_now][i] = temp_eff;
|
|
L_best[swarm_now][i] = x_now[swarm_now][i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
MOpt_globals.finds[i] = MOpt_globals.finds_v2[i];
|
|
MOpt_globals.cycles[i] = MOpt_globals.cycles_v2[i];
|
|
temp_stage_finds_puppet += MOpt_globals.finds[i];
|
|
|
|
} /* for i = 0; i < operator_num */
|
|
|
|
if (MOpt_globals.is_pilot_mode) {
|
|
|
|
swarm_now = swarm_now + 1;
|
|
if (swarm_now == swarm_num) {
|
|
|
|
key_module = 1;
|
|
for (i = 0; i < operator_num; ++i) {
|
|
|
|
core_operator_cycles_puppet_v2[i] =
|
|
core_operator_cycles_puppet[i];
|
|
core_operator_cycles_puppet_v3[i] =
|
|
core_operator_cycles_puppet[i];
|
|
core_operator_finds_puppet_v2[i] = core_operator_finds_puppet[i];
|
|
|
|
}
|
|
|
|
double swarm_eff = 0.0;
|
|
swarm_now = 0;
|
|
for (i = 0; i < swarm_num; ++i) {
|
|
|
|
if (swarm_fitness[i] > swarm_eff) {
|
|
|
|
swarm_eff = swarm_fitness[i];
|
|
swarm_now = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (swarm_now < 0 || swarm_now > swarm_num - 1)
|
|
PFATAL("swarm_now error number %d", swarm_now);
|
|
|
|
} /* if swarm_now == swarm_num */
|
|
|
|
/* adjust pointers dependent on 'swarm_now' */
|
|
MOpt_globals_pilot.finds = stage_finds_puppet[swarm_now];
|
|
MOpt_globals_pilot.finds_v2 = stage_finds_puppet_v2[swarm_now];
|
|
MOpt_globals_pilot.cycles = stage_cycles_puppet[swarm_now];
|
|
MOpt_globals_pilot.cycles_v2 = stage_cycles_puppet_v2[swarm_now];
|
|
MOpt_globals_pilot.cycles_v3 = stage_cycles_puppet_v3[swarm_now];
|
|
|
|
} else {
|
|
|
|
key_module = 2;
|
|
|
|
old_hit_count = new_hit_cnt;
|
|
|
|
} /* if pilot_mode */
|
|
|
|
} /* if (unlikely(*MOpt_globals.pTime > MOpt_globals.period)) */
|
|
|
|
} /* block */
|
|
|
|
} /* block */
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
#undef FLIP_BIT
|
|
|
|
#define pilot_fuzzing(a) common_fuzzing((a), MOpt_globals_pilot)
|
|
|
|
#define core_fuzzing(a) common_fuzzing((a), MOpt_globals_core)
|
|
|
|
void pso_updating(void) {
|
|
|
|
g_now += 1;
|
|
if (g_now > g_max) g_now = 0;
|
|
w_now = (w_init - w_end) * (g_max - g_now) / (g_max) + w_end;
|
|
int tmp_swarm, i, j;
|
|
u64 temp_operator_finds_puppet = 0;
|
|
for (i = 0; i < operator_num; ++i) {
|
|
|
|
operator_finds_puppet[i] = core_operator_finds_puppet[i];
|
|
|
|
for (j = 0; j < swarm_num; ++j) {
|
|
|
|
operator_finds_puppet[i] =
|
|
operator_finds_puppet[i] + stage_finds_puppet[j][i];
|
|
|
|
}
|
|
|
|
temp_operator_finds_puppet =
|
|
temp_operator_finds_puppet + operator_finds_puppet[i];
|
|
|
|
}
|
|
|
|
for (i = 0; i < operator_num; ++i) {
|
|
|
|
if (operator_finds_puppet[i])
|
|
G_best[i] = (double)((double)(operator_finds_puppet[i]) /
|
|
(double)(temp_operator_finds_puppet));
|
|
|
|
}
|
|
|
|
for (tmp_swarm = 0; tmp_swarm < swarm_num; ++tmp_swarm) {
|
|
|
|
double x_temp = 0.0;
|
|
for (i = 0; i < operator_num; ++i) {
|
|
|
|
probability_now[tmp_swarm][i] = 0.0;
|
|
v_now[tmp_swarm][i] =
|
|
w_now * v_now[tmp_swarm][i] +
|
|
RAND_C * (L_best[tmp_swarm][i] - x_now[tmp_swarm][i]) +
|
|
RAND_C * (G_best[i] - x_now[tmp_swarm][i]);
|
|
x_now[tmp_swarm][i] += v_now[tmp_swarm][i];
|
|
if (x_now[tmp_swarm][i] > v_max)
|
|
x_now[tmp_swarm][i] = v_max;
|
|
else if (x_now[tmp_swarm][i] < v_min)
|
|
x_now[tmp_swarm][i] = v_min;
|
|
x_temp += x_now[tmp_swarm][i];
|
|
|
|
}
|
|
|
|
for (i = 0; i < operator_num; ++i) {
|
|
|
|
x_now[tmp_swarm][i] = x_now[tmp_swarm][i] / x_temp;
|
|
if (likely(i != 0))
|
|
probability_now[tmp_swarm][i] =
|
|
probability_now[tmp_swarm][i - 1] + x_now[tmp_swarm][i];
|
|
else
|
|
probability_now[tmp_swarm][i] = x_now[tmp_swarm][i];
|
|
|
|
}
|
|
|
|
if (probability_now[tmp_swarm][operator_num - 1] < 0.99 ||
|
|
probability_now[tmp_swarm][operator_num - 1] > 1.01)
|
|
FATAL("ERROR probability");
|
|
|
|
}
|
|
|
|
swarm_now = 0;
|
|
key_module = 0;
|
|
|
|
}
|
|
|
|
/* larger change for MOpt implementation: the original fuzz_one was renamed
|
|
to fuzz_one_original. All documentation references to fuzz_one therefore
|
|
mean fuzz_one_original */
|
|
|
|
u8 fuzz_one(char** argv) {
|
|
|
|
int key_val_lv = 0;
|
|
|
|
#ifdef _AFL_DOCUMENT_MUTATIONS
|
|
if (do_document == 0) {
|
|
|
|
char* fn = alloc_printf("%s/mutations", out_dir);
|
|
if (fn) {
|
|
|
|
do_document = mkdir(fn, 0700); // if it exists we do not care
|
|
do_document = 1;
|
|
ck_free(fn);
|
|
|
|
} else
|
|
|
|
PFATAL("malloc()");
|
|
|
|
} else {
|
|
|
|
do_document = 2;
|
|
stop_soon = 2;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if (limit_time_sig == 0) {
|
|
|
|
key_val_lv = fuzz_one_original(argv);
|
|
|
|
} else {
|
|
|
|
if (key_module == 0)
|
|
key_val_lv = pilot_fuzzing(argv);
|
|
else if (key_module == 1)
|
|
key_val_lv = core_fuzzing(argv);
|
|
else if (key_module == 2)
|
|
pso_updating();
|
|
|
|
}
|
|
|
|
return key_val_lv;
|
|
|
|
}
|
|
|