Files
AFLplusplus/src/afl-fuzz-redqueen.c
2020-02-18 17:45:57 +01:00

563 lines
12 KiB
C

/*
american fuzzy lop++ - redqueen implementation on top of cmplog
---------------------------------------------------------------
Originally written by Michal Zalewski
Forkserver design by Jann Horn <jannhorn@googlemail.com>
Now maintained by by Marc Heuse <mh@mh-sec.de>,
Heiko Eißfeldt <heiko.eissfeldt@hexco.de> and
Andrea Fioraldi <andreafioraldi@gmail.com>
Copyright 2016, 2017 Google Inc. All rights reserved.
Copyright 2019-2020 AFLplusplus Project. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0
Shared code to handle the shared memory. This is used by the fuzzer
as well the other components like afl-tmin, afl-showmap, etc...
*/
#include "afl-fuzz.h"
#include "cmplog.h"
static char** its_argv;
///// Colorization
struct range {
u32 start;
u32 end;
struct range* next;
};
struct range* add_range(struct range* ranges, u32 start, u32 end) {
struct range* r = ck_alloc_nozero(sizeof(struct range));
r->start = start;
r->end = end;
r->next = ranges;
return r;
}
struct range* pop_biggest_range(struct range** ranges) {
struct range* r = *ranges;
struct range* prev = NULL;
struct range* rmax = NULL;
struct range* prev_rmax = NULL;
u32 max_size = 0;
while (r) {
u32 s = r->end - r->start;
if (s >= max_size) {
max_size = s;
prev_rmax = prev;
rmax = r;
}
prev = r;
r = r->next;
}
if (rmax) {
if (prev_rmax)
prev_rmax->next = rmax->next;
else
*ranges = rmax->next;
}
return rmax;
}
u8 get_exec_checksum(u8* buf, u32 len, u32* cksum) {
if (unlikely(common_fuzz_stuff(its_argv, buf, len))) return 1;
*cksum = hash32(trace_bits, MAP_SIZE, HASH_CONST);
return 0;
}
static void rand_replace(u8* buf, u32 len) {
u32 i;
for (i = 0; i < len; ++i)
buf[i] = UR(256);
}
u8 colorization(u8* buf, u32 len, u32 exec_cksum) {
struct range* ranges = add_range(NULL, 0, len);
u8* backup = ck_alloc_nozero(len);
u8 needs_write = 0;
u64 orig_hit_cnt, new_hit_cnt;
orig_hit_cnt = queued_paths + unique_crashes;
stage_name = "colorization";
stage_short = "colorization";
stage_max = 1000;
struct range* rng;
stage_cur = stage_max;
while ((rng = pop_biggest_range(&ranges)) != NULL && stage_cur) {
u32 s = rng->end - rng->start;
if (s == 0) goto empty_range;
memcpy(backup, buf + rng->start, s);
rand_replace(buf + rng->start, s);
u32 cksum;
if (unlikely(get_exec_checksum(buf, len, &cksum))) goto checksum_fail;
if (cksum != exec_cksum) {
ranges = add_range(ranges, rng->start, rng->start + s / 2);
ranges = add_range(ranges, rng->start + s / 2 + 1, rng->end);
memcpy(buf + rng->start, backup, s);
} else
needs_write = 1;
empty_range:
ck_free(rng);
--stage_cur;
}
if (stage_cur)
queue_cur->fully_colorized = 1;
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_COLORIZATION] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_COLORIZATION] += stage_max - stage_cur;
ck_free(backup);
while (ranges) {
rng = ranges;
ranges = ranges->next;
ck_free(rng);
}
// save the input with the high entropy
if (needs_write) {
s32 fd;
if (no_unlink) {
fd = open(queue_cur->fname, O_WRONLY | O_CREAT | O_TRUNC, 0600);
} else {
unlink(queue_cur->fname); /* ignore errors */
fd = open(queue_cur->fname, O_WRONLY | O_CREAT | O_EXCL, 0600);
}
if (fd < 0) PFATAL("Unable to create '%s'", queue_cur->fname);
ck_write(fd, buf, len, queue_cur->fname);
queue_cur->len = len; // no-op, just to be 100% safe
close(fd);
}
return 0;
checksum_fail:
ck_free(backup);
while (ranges) {
rng = ranges;
ranges = ranges->next;
ck_free(rng);
}
return 1;
}
///// Input to State replacement
u8 its_fuzz(u8* buf, u32 len, u8* status) {
u64 orig_hit_cnt, new_hit_cnt;
orig_hit_cnt = queued_paths + unique_crashes;
if (unlikely(common_fuzz_stuff(its_argv, buf, len))) return 1;
new_hit_cnt = queued_paths + unique_crashes;
if (unlikely(new_hit_cnt != orig_hit_cnt))
*status = 1;
else
*status = 2;
return 0;
}
u8 cmp_extend_encoding(struct cmp_header* h, u64 pattern, u64 repl, u32 idx,
u8* orig_buf, u8* buf, u32 len, u8 do_reverse,
u8* status) {
u64* buf_64 = (u64*)&buf[idx];
u32* buf_32 = (u32*)&buf[idx];
u16* buf_16 = (u16*)&buf[idx];
// u8* buf_8 = &buf[idx];
u64* o_buf_64 = (u64*)&orig_buf[idx];
u32* o_buf_32 = (u32*)&orig_buf[idx];
u16* o_buf_16 = (u16*)&orig_buf[idx];
// u8* o_buf_8 = &orig_buf[idx];
u32 its_len = len - idx;
*status = 0;
if (SHAPE_BYTES(h->shape) == 8) {
if (its_len >= 8 && *buf_64 == pattern && *o_buf_64 == pattern) {
*buf_64 = repl;
if (unlikely(its_fuzz(buf, len, status))) return 1;
*buf_64 = pattern;
}
// reverse encoding
if (do_reverse)
if (unlikely(cmp_extend_encoding(h, SWAP64(pattern), SWAP64(repl), idx,
orig_buf, buf, len, 0, status)))
return 1;
}
if (SHAPE_BYTES(h->shape) == 4 || *status == 2) {
if (its_len >= 4 && *buf_32 == (u32)pattern && *o_buf_32 == (u32)pattern) {
*buf_32 = (u32)repl;
if (unlikely(its_fuzz(buf, len, status))) return 1;
*buf_32 = pattern;
}
// reverse encoding
if (do_reverse)
if (unlikely(cmp_extend_encoding(h, SWAP32(pattern), SWAP32(repl), idx,
orig_buf, buf, len, 0, status)))
return 1;
}
if (SHAPE_BYTES(h->shape) == 2 || *status == 2) {
if (its_len >= 2 && *buf_16 == (u16)pattern && *o_buf_16 == (u16)pattern) {
*buf_16 = (u16)repl;
if (unlikely(its_fuzz(buf, len, status))) return 1;
*buf_16 = (u16)pattern;
}
// reverse encoding
if (do_reverse)
if (unlikely(cmp_extend_encoding(h, SWAP16(pattern), SWAP16(repl), idx,
orig_buf, buf, len, 0, status)))
return 1;
}
/*if (SHAPE_BYTES(h->shape) == 1 || *status == 2) {
if (its_len >= 2 && *buf_8 == (u8)pattern && *o_buf_8 == (u8)pattern) {
*buf_8 = (u8)repl;
if (unlikely(its_fuzz(buf, len, status)))
return 1;
*buf_16 = (u16)pattern;
}
}*/
return 0;
}
void try_to_add_to_dict(u64 v, u8 shape) {
u8* b = (u8*)&v;
u32 k;
u8 cons_ff = 0, cons_0 = 0;
for (k = 0; k < shape; ++k) {
if (b[k] == 0)
++cons_0;
else if (b[k] == 0xff)
++cons_0;
else
cons_0 = cons_ff = 0;
if (cons_0 > 1 || cons_ff > 1) return;
}
maybe_add_auto((u8*)&v, shape);
u64 rev;
switch (shape) {
case 1: break;
case 2:
rev = SWAP16((u16)v);
maybe_add_auto((u8*)&rev, shape);
break;
case 4:
rev = SWAP32((u32)v);
maybe_add_auto((u8*)&rev, shape);
break;
case 8:
rev = SWAP64(v);
maybe_add_auto((u8*)&rev, shape);
break;
}
}
u8 cmp_fuzz(u32 key, u8* orig_buf, u8* buf, u32 len) {
struct cmp_header* h = &cmp_map->headers[key];
u32 i, j, idx;
u32 loggeds = h->hits;
if (h->hits > CMP_MAP_H) loggeds = CMP_MAP_H;
u8 status;
// opt not in the paper
u32 fails = 0;
for (i = 0; i < loggeds; ++i) {
struct cmp_operands* o = &cmp_map->log[key][i];
// opt not in the paper
for (j = 0; j < i; ++j)
if (cmp_map->log[key][j].v0 == o->v0 && cmp_map->log[key][i].v1 == o->v1)
goto cmp_fuzz_next_iter;
for (idx = 0; idx < len && fails < 8; ++idx) {
if (unlikely(cmp_extend_encoding(h, o->v0, o->v1, idx, orig_buf, buf, len,
1, &status)))
return 1;
if (status == 2)
++fails;
else if (status == 1)
break;
if (unlikely(cmp_extend_encoding(h, o->v1, o->v0, idx, orig_buf, buf, len,
1, &status)))
return 1;
if (status == 2)
++fails;
else if (status == 1)
break;
}
// If failed, add to dictionary
if (fails == 8) {
try_to_add_to_dict(o->v0, SHAPE_BYTES(h->shape));
try_to_add_to_dict(o->v1, SHAPE_BYTES(h->shape));
}
cmp_fuzz_next_iter:
stage_cur++;
}
return 0;
}
u8 rtn_extend_encoding(struct cmp_header* h, u8* pattern, u8* repl, u32 idx,
u8* orig_buf, u8* buf, u32 len, u8* status) {
u32 i;
u32 its_len = MIN(32, len - idx);
u8 save[32];
memcpy(save, &buf[idx], its_len);
*status = 0;
for (i = 0; i < its_len; ++i) {
if (pattern[idx + i] != orig_buf[idx + i] || *status == 1)
break;
buf[idx +i] = repl[idx + i];
if (unlikely(its_fuzz(buf, len, status))) return 1;
}
memcpy(&buf[idx], save, i);
return 0;
}
u8 rtn_fuzz(u32 key, u8* orig_buf, u8* buf, u32 len) {
struct cmp_header* h = &cmp_map->headers[key];
u32 i, j, idx;
u32 loggeds = h->hits;
if (h->hits > CMP_MAP_RTN_H) loggeds = CMP_MAP_RTN_H;
u8 status;
// opt not in the paper
u32 fails = 0;
for (i = 0; i < loggeds; ++i) {
struct cmpfn_operands* o = &((struct cmpfn_operands*)cmp_map->log[key])[i];
// opt not in the paper
for (j = 0; j < i; ++j)
if (!memcmp(&((struct cmpfn_operands*)cmp_map->log[key])[j], o, sizeof(struct cmpfn_operands)))
goto rtn_fuzz_next_iter;
for (idx = 0; idx < len && fails < 8; ++idx) {
if (unlikely(rtn_extend_encoding(h, o->v0, o->v1, idx, orig_buf, buf, len,
&status)))
return 1;
if (status == 2)
++fails;
else if (status == 1)
break;
if (unlikely(rtn_extend_encoding(h, o->v1, o->v0, idx, orig_buf, buf, len,
&status)))
return 1;
if (status == 2)
++fails;
else if (status == 1)
break;
}
// If failed, add to dictionary
if (fails == 8) {
maybe_add_auto(o->v0, SHAPE_BYTES(h->shape));
maybe_add_auto(o->v1, SHAPE_BYTES(h->shape));
}
rtn_fuzz_next_iter:
stage_cur++;
}
return 0;
}
///// Input to State stage
// queue_cur->exec_cksum
u8 input_to_state_stage(char** argv, u8* orig_buf, u8* buf, u32 len,
u32 exec_cksum) {
u8 r = 1;
its_argv = argv;
if (unlikely(colorization(buf, len, exec_cksum))) return 1;
// do it manually, forkserver clear only trace_bits
memset(cmp_map->headers, 0, sizeof(cmp_map->headers));
if (unlikely(common_fuzz_cmplog_stuff(argv, buf, len))) return 1;
u64 orig_hit_cnt, new_hit_cnt;
u64 orig_execs = total_execs;
orig_hit_cnt = queued_paths + unique_crashes;
stage_name = "input-to-state";
stage_short = "its";
stage_max = 0;
stage_cur = 0;
u32 k;
for (k = 0; k < CMP_MAP_W; ++k) {
if (!cmp_map->headers[k].hits) continue;
if (cmp_map->headers[k].type == CMP_TYPE_INS)
stage_max += MIN(cmp_map->headers[k].hits, CMP_MAP_H);
else
stage_max += MIN(cmp_map->headers[k].hits, CMP_MAP_RTN_H);
}
for (k = 0; k < CMP_MAP_W; ++k) {
if (!cmp_map->headers[k].hits) continue;
if (cmp_map->headers[k].type == CMP_TYPE_INS) {
if (unlikely(cmp_fuzz(k, orig_buf, buf, len)))
goto exit_its;
} else {
if (unlikely(rtn_fuzz(k, orig_buf, buf, len)))
goto exit_its;
}
}
r = 0;
exit_its:
memcpy(orig_buf, buf, len);
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_ITS] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_ITS] += total_execs - orig_execs;
return r;
}