AFLplusplus/llvm_mode/afl-llvm-pass.so.cc
2019-07-03 19:10:48 +02:00

348 lines
11 KiB
C++

/*
american fuzzy lop - LLVM-mode instrumentation pass
---------------------------------------------------
Written by Laszlo Szekeres <lszekeres@google.com> and
Michal Zalewski <lcamtuf@google.com>
LLVM integration design comes from Laszlo Szekeres. C bits copied-and-pasted
from afl-as.c are Michal's fault.
Copyright 2015, 2016 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0
This library is plugged into LLVM when invoking clang through afl-clang-fast.
It tells the compiler to add code roughly equivalent to the bits discussed
in ../afl-as.h.
*/
#define AFL_LLVM_PASS
#include "../config.h"
#include "../debug.h"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <list>
#include <string>
#include <fstream>
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/IR/CFG.h"
using namespace llvm;
namespace {
class AFLCoverage : public ModulePass {
public:
static char ID;
AFLCoverage() : ModulePass(ID) {
char* instWhiteListFilename = getenv("AFL_LLVM_WHITELIST");
if (instWhiteListFilename) {
std::string line;
std::ifstream fileStream;
fileStream.open(instWhiteListFilename);
if (!fileStream)
report_fatal_error("Unable to open AFL_LLVM_WHITELIST");
getline(fileStream, line);
while (fileStream) {
myWhitelist.push_back(line);
getline(fileStream, line);
}
}
}
bool runOnModule(Module &M) override;
// StringRef getPassName() const override {
// return "American Fuzzy Lop Instrumentation";
// }
protected:
std::list<std::string> myWhitelist;
};
}
char AFLCoverage::ID = 0;
bool AFLCoverage::runOnModule(Module &M) {
LLVMContext &C = M.getContext();
IntegerType *Int8Ty = IntegerType::getInt8Ty(C);
IntegerType *Int32Ty = IntegerType::getInt32Ty(C);
unsigned int cur_loc = 0;
/* Show a banner */
char be_quiet = 0;
if (isatty(2) && !getenv("AFL_QUIET")) {
SAYF(cCYA "afl-llvm-pass" VERSION cRST " by <lszekeres@google.com>\n");
} else be_quiet = 1;
/* Decide instrumentation ratio */
char* inst_ratio_str = getenv("AFL_INST_RATIO");
unsigned int inst_ratio = 100;
if (inst_ratio_str) {
if (sscanf(inst_ratio_str, "%u", &inst_ratio) != 1 || !inst_ratio ||
inst_ratio > 100)
FATAL("Bad value of AFL_INST_RATIO (must be between 1 and 100)");
}
char* neverZero_counters_str = getenv("AFL_NZERO_COUNTS");
/* Get globals for the SHM region and the previous location. Note that
__afl_prev_loc is thread-local. */
GlobalVariable *AFLMapPtr =
new GlobalVariable(M, PointerType::get(Int8Ty, 0), false,
GlobalValue::ExternalLinkage, 0, "__afl_area_ptr");
GlobalVariable *AFLPrevLoc = new GlobalVariable(
M, Int32Ty, false, GlobalValue::ExternalLinkage, 0, "__afl_prev_loc",
0, GlobalVariable::GeneralDynamicTLSModel, 0, false);
/* Instrument all the things! */
int inst_blocks = 0;
for (auto &F : M)
for (auto &BB : F) {
BasicBlock::iterator IP = BB.getFirstInsertionPt();
IRBuilder<> IRB(&(*IP));
if (!myWhitelist.empty()) {
bool instrumentBlock = false;
/* Get the current location using debug information.
* For now, just instrument the block if we are not able
* to determine our location. */
DebugLoc Loc = IP->getDebugLoc();
if ( Loc ) {
DILocation *cDILoc = dyn_cast<DILocation>(Loc.getAsMDNode());
unsigned int instLine = cDILoc->getLine();
StringRef instFilename = cDILoc->getFilename();
if (instFilename.str().empty()) {
/* If the original location is empty, try using the inlined location */
DILocation *oDILoc = cDILoc->getInlinedAt();
if (oDILoc) {
instFilename = oDILoc->getFilename();
instLine = oDILoc->getLine();
}
}
/* Continue only if we know where we actually are */
if (!instFilename.str().empty()) {
for (std::list<std::string>::iterator it = myWhitelist.begin(); it != myWhitelist.end(); ++it) {
/* We don't check for filename equality here because
* filenames might actually be full paths. Instead we
* check that the actual filename ends in the filename
* specified in the list. */
if (instFilename.str().length() >= it->length()) {
if (instFilename.str().compare(instFilename.str().length() - it->length(), it->length(), *it) == 0) {
instrumentBlock = true;
break;
}
}
}
}
}
/* Either we couldn't figure out our location or the location is
* not whitelisted, so we skip instrumentation. */
if (!instrumentBlock) continue;
}
if (AFL_R(100) >= inst_ratio) continue;
/* Make up cur_loc */
//cur_loc++;
cur_loc = AFL_R(MAP_SIZE);
// only instrument if this basic block is the destination of a previous
// basic block that has multiple successors
// this gets rid of ~5-10% of instrumentations that are unnecessary
// result: a little more speed and less map pollution
int more_than_one = -1;
//fprintf(stderr, "BB %u: ", cur_loc);
for (BasicBlock *Pred : predecessors(&BB)) {
int count = 0;
if (more_than_one == -1)
more_than_one = 0;
//fprintf(stderr, " %p=>", Pred);
for (BasicBlock *Succ : successors(Pred)) {
//if (count > 0)
// fprintf(stderr, "|");
if (Succ != NULL) count++;
//fprintf(stderr, "%p", Succ);
}
if (count > 1)
more_than_one = 1;
}
//fprintf(stderr, " == %d\n", more_than_one);
if (more_than_one != 1)
continue;
ConstantInt *CurLoc = ConstantInt::get(Int32Ty, cur_loc);
/* Load prev_loc */
LoadInst *PrevLoc = IRB.CreateLoad(AFLPrevLoc);
PrevLoc->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None));
Value *PrevLocCasted = IRB.CreateZExt(PrevLoc, IRB.getInt32Ty());
/* Load SHM pointer */
LoadInst *MapPtr = IRB.CreateLoad(AFLMapPtr);
MapPtr->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None));
Value *MapPtrIdx = IRB.CreateGEP(MapPtr, IRB.CreateXor(PrevLocCasted, CurLoc));
/* Update bitmap */
LoadInst *Counter = IRB.CreateLoad(MapPtrIdx);
Counter->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None));
Value *Incr;
if (neverZero_counters_str == NULL || neverZero_counters_str[0] != '4')
Incr = IRB.CreateAdd(Counter, ConstantInt::get(Int8Ty, 1));
if (neverZero_counters_str != NULL) {
/* hexcoder: Realize a counter that skips zero during overflow.
* Once this counter reaches its maximum value, it next increments to 1
*
* Instead of
* Counter + 1 -> Counter
* we inject now this
* Counter + 1 -> {Counter, OverflowFlag}
* Counter + OverflowFlag -> Counter
*/
// Solution #1 - creates
//mov ecx,edx
//add cl,0x1
//adc dl,0x1
if (neverZero_counters_str[0] == '1') {
CallInst *AddOv = IRB.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, Counter, ConstantInt::get(Int8Ty, 1));
AddOv->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None));
Value *SumWithOverflowBit = AddOv;
Incr = IRB.CreateAdd(IRB.CreateExtractValue(SumWithOverflowBit, 0), // sum
IRB.CreateZExt( // convert from one bit type to 8 bits type
IRB.CreateExtractValue(SumWithOverflowBit, 1), // overflow
Int8Ty));
// Solution #2 - creates the same code as #1
} else if (neverZero_counters_str[0] == '2') {
auto cf = IRB.CreateICmpULT(Incr, ConstantInt::get(Int8Ty, 1));
Incr = IRB.CreateAdd(Incr, cf);
// Solution #3 - creates
//add cl,0x1
//cmp cl,0x1
//adc cl,0x0
} else if (neverZero_counters_str[0] == '3') {
auto cf = IRB.CreateICmpEQ(Incr, ConstantInt::get(Int8Ty, 0));
Incr = IRB.CreateAdd(Incr, cf);
// Solution #4 - creates
// cmp dl, $0xff
// sete cl
// add dl,cl
// add dl,0x01
} else if (neverZero_counters_str[0] == '4') {
auto cf = IRB.CreateICmpEQ(Counter, ConstantInt::get(Int8Ty, 255));
Value *HowMuch = IRB.CreateAdd(ConstantInt::get(Int8Ty, 1), cf);
Incr = IRB.CreateAdd(Counter, HowMuch);
} else if (neverZero_counters_str[0] == '5') {
auto cf = IRB.CreateICmpEQ(Incr, ConstantInt::get(Int8Ty, 0));
auto carry = IRB.CreateZExt(cf, Int8Ty);
Incr = IRB.CreateAdd(Incr, carry);
} else if (neverZero_counters_str[0] == '6') {
auto cf = IRB.CreateICmpULT(Incr, ConstantInt::get(Int8Ty, 1));
auto carry = IRB.CreateZExt(cf, Int8Ty);
Incr = IRB.CreateAdd(Incr, carry);
// no other implementations yet
} else {
fprintf(stderr, "Error: unknown value for AFL_NZERO_COUNTS: %s (valid is 1-4)\n", neverZero_counters_str);
exit(-1);
}
}
IRB.CreateStore(Incr, MapPtrIdx)->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None));
/* Set prev_loc to cur_loc >> 1 */
StoreInst *Store = IRB.CreateStore(ConstantInt::get(Int32Ty, cur_loc >> 1), AFLPrevLoc);
Store->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None));
inst_blocks++;
}
/* Say something nice. */
if (!be_quiet) {
if (!inst_blocks) WARNF("No instrumentation targets found.");
else OKF("Instrumented %u locations (%s mode, ratio %u%%).",
inst_blocks, getenv("AFL_HARDEN") ? "hardened" :
((getenv("AFL_USE_ASAN") || getenv("AFL_USE_MSAN")) ?
"ASAN/MSAN" : "non-hardened"), inst_ratio);
}
return true;
}
static void registerAFLPass(const PassManagerBuilder &,
legacy::PassManagerBase &PM) {
PM.add(new AFLCoverage());
}
static RegisterStandardPasses RegisterAFLPass(
PassManagerBuilder::EP_OptimizerLast, registerAFLPass);
static RegisterStandardPasses RegisterAFLPass0(
PassManagerBuilder::EP_EnabledOnOptLevel0, registerAFLPass);