AFLplusplus/qemu_mode/patches/afl-qemu-tcg-runtime-inl.h
2020-02-19 10:52:44 +01:00

161 lines
4.2 KiB
C

/*
american fuzzy lop++ - high-performance binary-only instrumentation
-------------------------------------------------------------------
Originally written by Andrew Griffiths <agriffiths@google.com> and
Michal Zalewski
TCG instrumentation and block chaining support by Andrea Biondo
<andrea.biondo965@gmail.com>
QEMU 3.1.1 port, TCG thread-safety, CompareCoverage and NeverZero
counters by Andrea Fioraldi <andreafioraldi@gmail.com>
Copyright 2015, 2016, 2017 Google Inc. All rights reserved.
Copyright 2019-2020 AFLplusplus Project. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0
This code is a shim patched into the separately-distributed source
code of QEMU 3.1.0. It leverages the built-in QEMU tracing functionality
to implement AFL-style instrumentation and to take care of the remaining
parts of the AFL fork server logic.
The resulting QEMU binary is essentially a standalone instrumentation
tool; for an example of how to leverage it for other purposes, you can
have a look at afl-showmap.c.
*/
#include "afl-qemu-common.h"
#include "tcg.h"
void HELPER(afl_entry_routine)(CPUArchState *env) {
afl_forkserver(ENV_GET_CPU(env));
}
void HELPER(afl_compcov_16)(target_ulong cur_loc, target_ulong arg1,
target_ulong arg2) {
register uintptr_t idx = cur_loc;
if ((arg1 & 0xff00) == (arg2 & 0xff00)) { INC_AFL_AREA(idx); }
}
void HELPER(afl_compcov_32)(target_ulong cur_loc, target_ulong arg1,
target_ulong arg2) {
register uintptr_t idx = cur_loc;
if ((arg1 & 0xff000000) == (arg2 & 0xff000000)) {
INC_AFL_AREA(idx + 2);
if ((arg1 & 0xff0000) == (arg2 & 0xff0000)) {
INC_AFL_AREA(idx + 1);
if ((arg1 & 0xff00) == (arg2 & 0xff00)) { INC_AFL_AREA(idx); }
}
}
}
void HELPER(afl_compcov_64)(target_ulong cur_loc, target_ulong arg1,
target_ulong arg2) {
register uintptr_t idx = cur_loc;
if ((arg1 & 0xff00000000000000) == (arg2 & 0xff00000000000000)) {
INC_AFL_AREA(idx + 6);
if ((arg1 & 0xff000000000000) == (arg2 & 0xff000000000000)) {
INC_AFL_AREA(idx + 5);
if ((arg1 & 0xff0000000000) == (arg2 & 0xff0000000000)) {
INC_AFL_AREA(idx + 4);
if ((arg1 & 0xff00000000) == (arg2 & 0xff00000000)) {
INC_AFL_AREA(idx + 3);
if ((arg1 & 0xff000000) == (arg2 & 0xff000000)) {
INC_AFL_AREA(idx + 2);
if ((arg1 & 0xff0000) == (arg2 & 0xff0000)) {
INC_AFL_AREA(idx + 1);
if ((arg1 & 0xff00) == (arg2 & 0xff00)) { INC_AFL_AREA(idx); }
}
}
}
}
}
}
}
void HELPER(afl_cmplog_16)(target_ulong cur_loc, target_ulong arg1,
target_ulong arg2) {
register uintptr_t k = (uintptr_t)cur_loc;
u32 hits = __afl_cmp_map->headers[k].hits;
__afl_cmp_map->headers[k].hits = hits + 1;
// if (!__afl_cmp_map->headers[k].cnt)
// __afl_cmp_map->headers[k].cnt = __afl_cmp_counter++;
__afl_cmp_map->headers[k].shape = 1;
//__afl_cmp_map->headers[k].type = CMP_TYPE_INS;
hits &= CMP_MAP_H - 1;
__afl_cmp_map->log[k][hits].v0 = arg1;
__afl_cmp_map->log[k][hits].v1 = arg2;
}
void HELPER(afl_cmplog_32)(target_ulong cur_loc, target_ulong arg1,
target_ulong arg2) {
register uintptr_t k = (uintptr_t)cur_loc;
u32 hits = __afl_cmp_map->headers[k].hits;
__afl_cmp_map->headers[k].hits = hits + 1;
__afl_cmp_map->headers[k].shape = 3;
hits &= CMP_MAP_H - 1;
__afl_cmp_map->log[k][hits].v0 = arg1;
__afl_cmp_map->log[k][hits].v1 = arg2;
}
void HELPER(afl_cmplog_64)(target_ulong cur_loc, target_ulong arg1,
target_ulong arg2) {
register uintptr_t k = (uintptr_t)cur_loc;
u32 hits = __afl_cmp_map->headers[k].hits;
__afl_cmp_map->headers[k].hits = hits + 1;
__afl_cmp_map->headers[k].shape = 7;
hits &= CMP_MAP_H - 1;
__afl_cmp_map->log[k][hits].v0 = arg1;
__afl_cmp_map->log[k][hits].v1 = arg2;
}