renamed examples/ to utils/

This commit is contained in:
vanhauser-thc
2020-12-01 14:40:30 +01:00
parent 8584f9d2b5
commit c05e4efbe9
88 changed files with 50 additions and 48 deletions

View File

@ -0,0 +1,7 @@
all: libexamplemutator.so
libexamplemutator.so:
$(CC) $(CFLAGS) -D_FORTIFY_SOURCE=2 -O3 -fPIC -shared -g -I ../../include example.c -o libexamplemutator.so
clean:
rm -rf libexamplemutator.so

View File

@ -0,0 +1,35 @@
# Examples for the custom mutator
These are example and helper files for the custom mutator feature.
See [docs/custom_mutators.md](../../docs/custom_mutators.md) for more information
Note that if you compile with python3.7 you must use python3 scripts, and if
you use python2.7 to compile python2 scripts!
simple_example.c - most simplest example. generates a random sized buffer
filled with 'A'
example.c - this is a simple example written in C and should be compiled to a
shared library. Use make to compile it and produce libexamplemutator.so
example.py - this is the template you can use, the functions are there but they
are empty
post_library_gif.so.c - fix a fuzz input to ensure it is valid for GIF
post_library_png.so.c - fix a fuzz input to ensure it is valid for PNG
simple-chunk-replace.py - this is a simple example where chunks are replaced
common.py - this can be used for common functions and helpers.
the examples do not use this though. But you can :)
wrapper_afl_min.py - mutation of XML documents, loads XmlMutatorMin.py
XmlMutatorMin.py - module for XML mutation
custom_mutator_helpers.h is an header that defines some helper routines
like surgical_havoc_mutate() that allow to perform a randomly chosen
mutation from a subset of the havoc mutations.
If you do so, you have to specify -I /path/to/AFLplusplus/include when
compiling.

View File

@ -0,0 +1,332 @@
#!/usr/bin/python
""" Mutation of XML documents, should be called from one of its wrappers (CLI, AFL, ...) """
from __future__ import print_function
from copy import deepcopy
from lxml import etree as ET
import random, re, io
###########################
# The XmlMutatorMin class #
###########################
class XmlMutatorMin:
"""
Optionals parameters:
seed Seed used by the PRNG (default: "RANDOM")
verbose Verbosity (default: False)
"""
def __init__(self, seed="RANDOM", verbose=False):
""" Initialize seed, database and mutators """
# Verbosity
self.verbose = verbose
# Initialize PRNG
self.seed = str(seed)
if self.seed == "RANDOM":
random.seed()
else:
if self.verbose:
print("Static seed '%s'" % self.seed)
random.seed(self.seed)
# Initialize input and output documents
self.input_tree = None
self.tree = None
# High-level mutators (no database needed)
hl_mutators_delete = ["del_node_and_children", "del_node_but_children", "del_attribute", "del_content"] # Delete items
hl_mutators_fuzz = ["fuzz_attribute"] # Randomly change attribute values
# Exposed mutators
self.hl_mutators_all = hl_mutators_fuzz + hl_mutators_delete
def __parse_xml(self, xml):
""" Parse an XML string. Basic wrapper around lxml.parse() """
try:
# Function parse() takes care of comments / DTD / processing instructions / ...
tree = ET.parse(io.BytesIO(xml))
except ET.ParseError:
raise RuntimeError("XML isn't well-formed!")
except LookupError as e:
raise RuntimeError(e)
# Return a document wrapper
return tree
def __exec_among(self, module, functions, min_times, max_times):
""" Randomly execute $functions between $min and $max times """
for i in xrange(random.randint(min_times, max_times)):
# Function names are mangled because they are "private"
getattr(module, "_XmlMutatorMin__" + random.choice(functions))()
def __serialize_xml(self, tree):
""" Serialize a XML document. Basic wrapper around lxml.tostring() """
return ET.tostring(tree, with_tail=False, xml_declaration=True, encoding=tree.docinfo.encoding)
def __ver(self, version):
""" Helper for displaying lxml version numbers """
return ".".join(map(str, version))
def reset(self):
""" Reset the mutator """
self.tree = deepcopy(self.input_tree)
def init_from_string(self, input_string):
""" Initialize the mutator from a XML string """
# Get a pointer to the top-element
self.input_tree = self.__parse_xml(input_string)
# Get a working copy
self.tree = deepcopy(self.input_tree)
def save_to_string(self):
""" Return the current XML document as UTF-8 string """
# Return a text version of the tree
return self.__serialize_xml(self.tree)
def __pick_element(self, exclude_root_node=False):
""" Pick a random element from the current document """
# Get a list of all elements, but nodes like PI and comments
elems = list(self.tree.getroot().iter(tag=ET.Element))
# Is the root node excluded?
if exclude_root_node:
start = 1
else:
start = 0
# Pick a random element
try:
elem_id = random.randint(start, len(elems) - 1)
elem = elems[elem_id]
except ValueError:
# Should only occurs if "exclude_root_node = True"
return (None, None)
return (elem_id, elem)
def __fuzz_attribute(self):
""" Fuzz (part of) an attribute value """
# Select a node to modify
(rand_elem_id, rand_elem) = self.__pick_element()
# Get all the attributes
attribs = rand_elem.keys()
# Is there attributes?
if len(attribs) < 1:
if self.verbose:
print("No attribute: can't replace!")
return
# Pick a random attribute
rand_attrib_id = random.randint(0, len(attribs) - 1)
rand_attrib = attribs[rand_attrib_id]
# We have the attribute to modify
# Get its value
attrib_value = rand_elem.get(rand_attrib)
# print("- Value: " + attrib_value)
# Should we work on the whole value?
func_call = "(?P<func>[a-zA-Z:\-]+)\((?P<args>.*?)\)"
p = re.compile(func_call)
l = p.findall(attrib_value)
if random.choice((True, False)) and l:
# Randomly pick one the function calls
(func, args) = random.choice(l)
# Split by "," and randomly pick one of the arguments
value = random.choice(args.split(','))
# Remove superfluous characters
unclean_value = value
value = value.strip(" ").strip("'")
# print("Selected argument: [%s]" % value)
else:
value = attrib_value
# For each type, define some possible replacement values
choices_number = ( \
"0", \
"11111", \
"-128", \
"2", \
"-1", \
"1/3", \
"42/0", \
"1094861636 idiv 1.0", \
"-1123329771506872 idiv 3.8", \
"17=$numericRTF", \
str(3 + random.randrange(0, 100)), \
)
choices_letter = ( \
"P" * (25 * random.randrange(1, 100)), \
"%s%s%s%s%s%s", \
"foobar", \
)
choices_alnum = ( \
"Abc123", \
"020F0302020204030204", \
"020F0302020204030204" * (random.randrange(5, 20)), \
)
# Fuzz the value
if random.choice((True,False)) and value == "":
# Empty
new_value = value
elif random.choice((True,False)) and value.isdigit():
# Numbers
new_value = random.choice(choices_number)
elif random.choice((True,False)) and value.isalpha():
# Letters
new_value = random.choice(choices_letter)
elif random.choice((True,False)) and value.isalnum():
# Alphanumeric
new_value = random.choice(choices_alnum)
else:
# Default type
new_value = random.choice(choices_alnum + choices_letter + choices_number)
# If we worked on a substring, apply changes to the whole string
if value != attrib_value:
# No ' around empty values
if new_value != "" and value != "":
new_value = "'" + new_value + "'"
# Apply changes
new_value = attrib_value.replace(unclean_value, new_value)
# Log something
if self.verbose:
print("Fuzzing attribute #%i '%s' of tag #%i '%s'" % (rand_attrib_id, rand_attrib, rand_elem_id, rand_elem.tag))
# Modify the attribute
rand_elem.set(rand_attrib, new_value.decode("utf-8"))
def __del_node_and_children(self):
""" High-level minimizing mutator
Delete a random node and its children (i.e. delete a random tree) """
self.__del_node(True)
def __del_node_but_children(self):
""" High-level minimizing mutator
Delete a random node but its children (i.e. link them to the parent of the deleted node) """
self.__del_node(False)
def __del_node(self, delete_children):
""" Called by the __del_node_* mutators """
# Select a node to modify (but the root one)
(rand_elem_id, rand_elem) = self.__pick_element(exclude_root_node=True)
# If the document includes only a top-level element
# Then we can't pick a element (given that "exclude_root_node = True")
# Is the document deep enough?
if rand_elem is None:
if self.verbose:
print("Can't delete a node: document not deep enough!")
return
# Log something
if self.verbose:
but_or_and = "and" if delete_children else "but"
print("Deleting tag #%i '%s' %s its children" % (rand_elem_id, rand_elem.tag, but_or_and))
if delete_children is False:
# Link children of the random (soon to be deleted) node to its parent
for child in rand_elem:
rand_elem.getparent().append(child)
# Remove the node
rand_elem.getparent().remove(rand_elem)
def __del_content(self):
""" High-level minimizing mutator
Delete the attributes and children of a random node """
# Select a node to modify
(rand_elem_id, rand_elem) = self.__pick_element()
# Log something
if self.verbose:
print("Reseting tag #%i '%s'" % (rand_elem_id, rand_elem.tag))
# Reset the node
rand_elem.clear()
def __del_attribute(self):
""" High-level minimizing mutator
Delete a random attribute from a random node """
# Select a node to modify
(rand_elem_id, rand_elem) = self.__pick_element()
# Get all the attributes
attribs = rand_elem.keys()
# Is there attributes?
if len(attribs) < 1:
if self.verbose:
print("No attribute: can't delete!")
return
# Pick a random attribute
rand_attrib_id = random.randint(0, len(attribs) - 1)
rand_attrib = attribs[rand_attrib_id]
# Log something
if self.verbose:
print("Deleting attribute #%i '%s' of tag #%i '%s'" % (rand_attrib_id, rand_attrib, rand_elem_id, rand_elem.tag))
# Delete the attribute
rand_elem.attrib.pop(rand_attrib)
def mutate(self, min=1, max=5):
""" Execute some high-level mutators between $min and $max times, then some medium-level ones """
# High-level mutation
self.__exec_among(self, self.hl_mutators_all, min, max)

View File

@ -0,0 +1,40 @@
#!/usr/bin/env python
# encoding: utf-8
'''
Module containing functions shared between multiple AFL modules
@author: Christian Holler (:decoder)
@license:
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
@contact: choller@mozilla.com
'''
from __future__ import print_function
import random
import os
import re
def randel(l):
if not l:
return None
return l[random.randint(0, len(l)-1)]
def randel_pop(l):
if not l:
return None
return l.pop(random.randint(0, len(l)-1))
def write_exc_example(data, exc):
exc_name = re.sub(r'[^a-zA-Z0-9]', '_', repr(exc))
if not os.path.exists(exc_name):
with open(exc_name, 'w') as f:
f.write(data)

View File

@ -0,0 +1,342 @@
#ifndef CUSTOM_MUTATOR_HELPERS
#define CUSTOM_MUTATOR_HELPERS
#include "config.h"
#include "types.h"
#include <stdlib.h>
#define INITIAL_GROWTH_SIZE (64)
#define RAND_BELOW(limit) (rand() % (limit))
/* Use in a struct: creates a name_buf and a name_size variable. */
#define BUF_VAR(type, name) \
type * name##_buf; \
size_t name##_size;
/* this fills in `&structptr->something_buf, &structptr->something_size`. */
#define BUF_PARAMS(struct, name) \
(void **)&struct->name##_buf, &struct->name##_size
typedef struct {
} afl_t;
static void surgical_havoc_mutate(u8 *out_buf, s32 begin, s32 end) {
static s8 interesting_8[] = {INTERESTING_8};
static s16 interesting_16[] = {INTERESTING_8, INTERESTING_16};
static s32 interesting_32[] = {INTERESTING_8, INTERESTING_16, INTERESTING_32};
switch (RAND_BELOW(12)) {
case 0: {
/* Flip a single bit somewhere. Spooky! */
s32 bit_idx = ((RAND_BELOW(end - begin) + begin) << 3) + RAND_BELOW(8);
out_buf[bit_idx >> 3] ^= 128 >> (bit_idx & 7);
break;
}
case 1: {
/* Set byte to interesting value. */
u8 val = interesting_8[RAND_BELOW(sizeof(interesting_8))];
out_buf[(RAND_BELOW(end - begin) + begin)] = val;
break;
}
case 2: {
/* Set word to interesting value, randomly choosing endian. */
if (end - begin < 2) break;
s32 byte_idx = (RAND_BELOW(end - begin) + begin);
if (byte_idx >= end - 1) break;
switch (RAND_BELOW(2)) {
case 0:
*(u16 *)(out_buf + byte_idx) =
interesting_16[RAND_BELOW(sizeof(interesting_16) >> 1)];
break;
case 1:
*(u16 *)(out_buf + byte_idx) =
SWAP16(interesting_16[RAND_BELOW(sizeof(interesting_16) >> 1)]);
break;
}
break;
}
case 3: {
/* Set dword to interesting value, randomly choosing endian. */
if (end - begin < 4) break;
s32 byte_idx = (RAND_BELOW(end - begin) + begin);
if (byte_idx >= end - 3) break;
switch (RAND_BELOW(2)) {
case 0:
*(u32 *)(out_buf + byte_idx) =
interesting_32[RAND_BELOW(sizeof(interesting_32) >> 2)];
break;
case 1:
*(u32 *)(out_buf + byte_idx) =
SWAP32(interesting_32[RAND_BELOW(sizeof(interesting_32) >> 2)]);
break;
}
break;
}
case 4: {
/* Set qword to interesting value, randomly choosing endian. */
if (end - begin < 8) break;
s32 byte_idx = (RAND_BELOW(end - begin) + begin);
if (byte_idx >= end - 7) break;
switch (RAND_BELOW(2)) {
case 0:
*(u64 *)(out_buf + byte_idx) =
(s64)interesting_32[RAND_BELOW(sizeof(interesting_32) >> 2)];
break;
case 1:
*(u64 *)(out_buf + byte_idx) = SWAP64(
(s64)interesting_32[RAND_BELOW(sizeof(interesting_32) >> 2)]);
break;
}
break;
}
case 5: {
/* Randomly subtract from byte. */
out_buf[(RAND_BELOW(end - begin) + begin)] -= 1 + RAND_BELOW(ARITH_MAX);
break;
}
case 6: {
/* Randomly add to byte. */
out_buf[(RAND_BELOW(end - begin) + begin)] += 1 + RAND_BELOW(ARITH_MAX);
break;
}
case 7: {
/* Randomly subtract from word, random endian. */
if (end - begin < 2) break;
s32 byte_idx = (RAND_BELOW(end - begin) + begin);
if (byte_idx >= end - 1) break;
if (RAND_BELOW(2)) {
*(u16 *)(out_buf + byte_idx) -= 1 + RAND_BELOW(ARITH_MAX);
} else {
u16 num = 1 + RAND_BELOW(ARITH_MAX);
*(u16 *)(out_buf + byte_idx) =
SWAP16(SWAP16(*(u16 *)(out_buf + byte_idx)) - num);
}
break;
}
case 8: {
/* Randomly add to word, random endian. */
if (end - begin < 2) break;
s32 byte_idx = (RAND_BELOW(end - begin) + begin);
if (byte_idx >= end - 1) break;
if (RAND_BELOW(2)) {
*(u16 *)(out_buf + byte_idx) += 1 + RAND_BELOW(ARITH_MAX);
} else {
u16 num = 1 + RAND_BELOW(ARITH_MAX);
*(u16 *)(out_buf + byte_idx) =
SWAP16(SWAP16(*(u16 *)(out_buf + byte_idx)) + num);
}
break;
}
case 9: {
/* Randomly subtract from dword, random endian. */
if (end - begin < 4) break;
s32 byte_idx = (RAND_BELOW(end - begin) + begin);
if (byte_idx >= end - 3) break;
if (RAND_BELOW(2)) {
*(u32 *)(out_buf + byte_idx) -= 1 + RAND_BELOW(ARITH_MAX);
} else {
u32 num = 1 + RAND_BELOW(ARITH_MAX);
*(u32 *)(out_buf + byte_idx) =
SWAP32(SWAP32(*(u32 *)(out_buf + byte_idx)) - num);
}
break;
}
case 10: {
/* Randomly add to dword, random endian. */
if (end - begin < 4) break;
s32 byte_idx = (RAND_BELOW(end - begin) + begin);
if (byte_idx >= end - 3) break;
if (RAND_BELOW(2)) {
*(u32 *)(out_buf + byte_idx) += 1 + RAND_BELOW(ARITH_MAX);
} else {
u32 num = 1 + RAND_BELOW(ARITH_MAX);
*(u32 *)(out_buf + byte_idx) =
SWAP32(SWAP32(*(u32 *)(out_buf + byte_idx)) + num);
}
break;
}
case 11: {
/* Just set a random byte to a random value. Because,
why not. We use XOR with 1-255 to eliminate the
possibility of a no-op. */
out_buf[(RAND_BELOW(end - begin) + begin)] ^= 1 + RAND_BELOW(255);
break;
}
}
}
/* This function calculates the next power of 2 greater or equal its argument.
@return The rounded up power of 2 (if no overflow) or 0 on overflow.
*/
static inline size_t next_pow2(size_t in) {
if (in == 0 || in > (size_t)-1)
return 0; /* avoid undefined behaviour under-/overflow */
size_t out = in - 1;
out |= out >> 1;
out |= out >> 2;
out |= out >> 4;
out |= out >> 8;
out |= out >> 16;
return out + 1;
}
/* This function makes sure *size is > size_needed after call.
It will realloc *buf otherwise.
*size will grow exponentially as per:
https://blog.mozilla.org/nnethercote/2014/11/04/please-grow-your-buffers-exponentially/
Will return NULL and free *buf if size_needed is <1 or realloc failed.
@return For convenience, this function returns *buf.
*/
static inline void *maybe_grow(void **buf, size_t *size, size_t size_needed) {
/* No need to realloc */
if (likely(size_needed && *size >= size_needed)) return *buf;
/* No initial size was set */
if (size_needed < INITIAL_GROWTH_SIZE) size_needed = INITIAL_GROWTH_SIZE;
/* grow exponentially */
size_t next_size = next_pow2(size_needed);
/* handle overflow */
if (!next_size) { next_size = size_needed; }
/* alloc */
*buf = realloc(*buf, next_size);
*size = *buf ? next_size : 0;
return *buf;
}
/* Swaps buf1 ptr and buf2 ptr, as well as their sizes */
static inline void afl_swap_bufs(void **buf1, size_t *size1, void **buf2,
size_t *size2) {
void * scratch_buf = *buf1;
size_t scratch_size = *size1;
*buf1 = *buf2;
*size1 = *size2;
*buf2 = scratch_buf;
*size2 = scratch_size;
}
#undef INITIAL_GROWTH_SIZE
#endif

View File

@ -0,0 +1,376 @@
/*
New Custom Mutator for AFL++
Written by Khaled Yakdan <yakdan@code-intelligence.de>
Andrea Fioraldi <andreafioraldi@gmail.com>
Shengtuo Hu <h1994st@gmail.com>
Dominik Maier <mail@dmnk.co>
*/
// You need to use -I /path/to/AFLplusplus/include
#include "custom_mutator_helpers.h"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#define DATA_SIZE (100)
static const char *commands[] = {
"GET",
"PUT",
"DEL",
};
typedef struct my_mutator {
afl_t *afl;
// any additional data here!
size_t trim_size_current;
int trimmming_steps;
int cur_step;
// Reused buffers:
BUF_VAR(u8, fuzz);
BUF_VAR(u8, data);
BUF_VAR(u8, havoc);
BUF_VAR(u8, trim);
BUF_VAR(u8, post_process);
} my_mutator_t;
/**
* Initialize this custom mutator
*
* @param[in] afl a pointer to the internal state object. Can be ignored for
* now.
* @param[in] seed A seed for this mutator - the same seed should always mutate
* in the same way.
* @return Pointer to the data object this custom mutator instance should use.
* There may be multiple instances of this mutator in one afl-fuzz run!
* Return NULL on error.
*/
my_mutator_t *afl_custom_init(afl_t *afl, unsigned int seed) {
srand(seed); // needed also by surgical_havoc_mutate()
my_mutator_t *data = calloc(1, sizeof(my_mutator_t));
if (!data) {
perror("afl_custom_init alloc");
return NULL;
}
data->afl = afl;
return data;
}
/**
* Perform custom mutations on a given input
*
* (Optional for now. Required in the future)
*
* @param[in] data pointer returned in afl_custom_init for this fuzz case
* @param[in] buf Pointer to input data to be mutated
* @param[in] buf_size Size of input data
* @param[out] out_buf the buffer we will work on. we can reuse *buf. NULL on
* error.
* @param[in] add_buf Buffer containing the additional test case
* @param[in] add_buf_size Size of the additional test case
* @param[in] max_size Maximum size of the mutated output. The mutation must not
* produce data larger than max_size.
* @return Size of the mutated output.
*/
size_t afl_custom_fuzz(my_mutator_t *data, uint8_t *buf, size_t buf_size,
u8 **out_buf, uint8_t *add_buf,
size_t add_buf_size, // add_buf can be NULL
size_t max_size) {
// Make sure that the packet size does not exceed the maximum size expected by
// the fuzzer
size_t mutated_size = DATA_SIZE <= max_size ? DATA_SIZE : max_size;
// maybe_grow is optimized to be quick for reused buffers.
u8 *mutated_out = maybe_grow(BUF_PARAMS(data, fuzz), mutated_size);
if (!mutated_out) {
*out_buf = NULL;
perror("custom mutator allocation (maybe_grow)");
return 0; /* afl-fuzz will very likely error out after this. */
}
// Randomly select a command string to add as a header to the packet
memcpy(mutated_out, commands[rand() % 3], 3);
// Mutate the payload of the packet
int i;
for (i = 0; i < 8; ++i) {
// Randomly perform one of the (no len modification) havoc mutations
surgical_havoc_mutate(mutated_out, 3, mutated_size);
}
*out_buf = mutated_out;
return mutated_size;
}
/**
* A post-processing function to use right before AFL writes the test case to
* disk in order to execute the target.
*
* (Optional) If this functionality is not needed, simply don't define this
* function.
*
* @param[in] data pointer returned in afl_custom_init for this fuzz case
* @param[in] buf Buffer containing the test case to be executed
* @param[in] buf_size Size of the test case
* @param[out] out_buf Pointer to the buffer containing the test case after
* processing. External library should allocate memory for out_buf.
* The buf pointer may be reused (up to the given buf_size);
* @return Size of the output buffer after processing or the needed amount.
* A return of 0 indicates an error.
*/
size_t afl_custom_post_process(my_mutator_t *data, uint8_t *buf,
size_t buf_size, uint8_t **out_buf) {
uint8_t *post_process_buf =
maybe_grow(BUF_PARAMS(data, post_process), buf_size + 5);
if (!post_process_buf) {
perror("custom mutator realloc failed.");
*out_buf = NULL;
return 0;
}
memcpy(post_process_buf + 5, buf, buf_size);
post_process_buf[0] = 'A';
post_process_buf[1] = 'F';
post_process_buf[2] = 'L';
post_process_buf[3] = '+';
post_process_buf[4] = '+';
*out_buf = post_process_buf;
return buf_size + 5;
}
/**
* This method is called at the start of each trimming operation and receives
* the initial buffer. It should return the amount of iteration steps possible
* on this input (e.g. if your input has n elements and you want to remove
* them one by one, return n, if you do a binary search, return log(n),
* and so on...).
*
* If your trimming algorithm doesn't allow you to determine the amount of
* (remaining) steps easily (esp. while running), then you can alternatively
* return 1 here and always return 0 in post_trim until you are finished and
* no steps remain. In that case, returning 1 in post_trim will end the
* trimming routine. The whole current index/max iterations stuff is only used
* to show progress.
*
* (Optional)
*
* @param data pointer returned in afl_custom_init for this fuzz case
* @param buf Buffer containing the test case
* @param buf_size Size of the test case
* @return The amount of possible iteration steps to trim the input.
* negative on error.
*/
int32_t afl_custom_init_trim(my_mutator_t *data, uint8_t *buf,
size_t buf_size) {
// We simply trim once
data->trimmming_steps = 1;
data->cur_step = 0;
if (!maybe_grow(BUF_PARAMS(data, trim), buf_size)) {
perror("init_trim grow");
return -1;
}
memcpy(data->trim_buf, buf, buf_size);
data->trim_size_current = buf_size;
return data->trimmming_steps;
}
/**
* This method is called for each trimming operation. It doesn't have any
* arguments because we already have the initial buffer from init_trim and we
* can memorize the current state in *data. This can also save
* reparsing steps for each iteration. It should return the trimmed input
* buffer, where the returned data must not exceed the initial input data in
* length. Returning anything that is larger than the original data (passed
* to init_trim) will result in a fatal abort of AFLFuzz.
*
* (Optional)
*
* @param[in] data pointer returned in afl_custom_init for this fuzz case
* @param[out] out_buf Pointer to the buffer containing the trimmed test case.
* External library should allocate memory for out_buf.
* AFL++ will not release the memory after saving the test case.
* Keep a ref in *data.
* *out_buf = NULL is treated as error.
* @return Pointer to the size of the trimmed test case
*/
size_t afl_custom_trim(my_mutator_t *data, uint8_t **out_buf) {
*out_buf = data->trim_buf;
// Remove the last byte of the trimming input
return data->trim_size_current - 1;
}
/**
* This method is called after each trim operation to inform you if your
* trimming step was successful or not (in terms of coverage). If you receive
* a failure here, you should reset your input to the last known good state.
*
* (Optional)
*
* @param[in] data pointer returned in afl_custom_init for this fuzz case
* @param success Indicates if the last trim operation was successful.
* @return The next trim iteration index (from 0 to the maximum amount of
* steps returned in init_trim). negative ret on failure.
*/
int32_t afl_custom_post_trim(my_mutator_t *data, int success) {
if (success) {
++data->cur_step;
return data->cur_step;
}
return data->trimmming_steps;
}
/**
* Perform a single custom mutation on a given input.
* This mutation is stacked with the other muatations in havoc.
*
* (Optional)
*
* @param[in] data pointer returned in afl_custom_init for this fuzz case
* @param[in] buf Pointer to the input data to be mutated and the mutated
* output
* @param[in] buf_size Size of input data
* @param[out] out_buf The output buffer. buf can be reused, if the content
* fits. *out_buf = NULL is treated as error.
* @param[in] max_size Maximum size of the mutated output. The mutation must
* not produce data larger than max_size.
* @return Size of the mutated output.
*/
size_t afl_custom_havoc_mutation(my_mutator_t *data, u8 *buf, size_t buf_size,
u8 **out_buf, size_t max_size) {
if (buf_size == 0) {
*out_buf = maybe_grow(BUF_PARAMS(data, havoc), 1);
if (!*out_buf) {
perror("custom havoc: maybe_grow");
return 0;
}
**out_buf = rand() % 256;
buf_size = 1;
} else {
// We reuse buf here. It's legal and faster.
*out_buf = buf;
}
size_t victim = rand() % buf_size;
(*out_buf)[victim] += rand() % 10;
return buf_size;
}
/**
* Return the probability (in percentage) that afl_custom_havoc_mutation
* is called in havoc. By default it is 6 %.
*
* (Optional)
*
* @param[in] data pointer returned in afl_custom_init for this fuzz case
* @return The probability (0-100).
*/
uint8_t afl_custom_havoc_mutation_probability(my_mutator_t *data) {
return 5; // 5 %
}
/**
* Determine whether the fuzzer should fuzz the queue entry or not.
*
* (Optional)
*
* @param[in] data pointer returned in afl_custom_init for this fuzz case
* @param filename File name of the test case in the queue entry
* @return Return True(1) if the fuzzer will fuzz the queue entry, and
* False(0) otherwise.
*/
uint8_t afl_custom_queue_get(my_mutator_t *data, const uint8_t *filename) {
return 1;
}
/**
* Allow for additional analysis (e.g. calling a different tool that does a
* different kind of coverage and saves this for the custom mutator).
*
* (Optional)
*
* @param data pointer returned in afl_custom_init for this fuzz case
* @param filename_new_queue File name of the new queue entry
* @param filename_orig_queue File name of the original queue entry
*/
void afl_custom_queue_new_entry(my_mutator_t * data,
const uint8_t *filename_new_queue,
const uint8_t *filename_orig_queue) {
/* Additional analysis on the original or new test case */
}
/**
* Deinitialize everything
*
* @param data The data ptr from afl_custom_init
*/
void afl_custom_deinit(my_mutator_t *data) {
free(data->post_process_buf);
free(data->havoc_buf);
free(data->data_buf);
free(data->fuzz_buf);
free(data->trim_buf);
free(data);
}

View File

@ -0,0 +1,186 @@
#!/usr/bin/env python
# encoding: utf-8
'''
Example Python Module for AFLFuzz
@author: Christian Holler (:decoder)
@license:
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
@contact: choller@mozilla.com
'''
import random
COMMANDS = [
b"GET",
b"PUT",
b"DEL",
b"AAAAAAAAAAAAAAAAA",
]
def init(seed):
'''
Called once when AFLFuzz starts up. Used to seed our RNG.
@type seed: int
@param seed: A 32-bit random value
'''
random.seed(seed)
def deinit():
pass
def fuzz(buf, add_buf, max_size):
'''
Called per fuzzing iteration.
@type buf: bytearray
@param buf: The buffer that should be mutated.
@type add_buf: bytearray
@param add_buf: A second buffer that can be used as mutation source.
@type max_size: int
@param max_size: Maximum size of the mutated output. The mutation must not
produce data larger than max_size.
@rtype: bytearray
@return: A new bytearray containing the mutated data
'''
ret = bytearray(100)
ret[:3] = random.choice(COMMANDS)
return ret
# Uncomment and implement the following methods if you want to use a custom
# trimming algorithm. See also the documentation for a better API description.
# def init_trim(buf):
# '''
# Called per trimming iteration.
#
# @type buf: bytearray
# @param buf: The buffer that should be trimmed.
#
# @rtype: int
# @return: The maximum number of trimming steps.
# '''
# global ...
#
# # Initialize global variables
#
# # Figure out how many trimming steps are possible.
# # If this is not possible for your trimming, you can
# # return 1 instead and always return 0 in post_trim
# # until you are done (then you return 1).
#
# return steps
#
# def trim():
# '''
# Called per trimming iteration.
#
# @rtype: bytearray
# @return: A new bytearray containing the trimmed data.
# '''
# global ...
#
# # Implement the actual trimming here
#
# return bytearray(...)
#
# def post_trim(success):
# '''
# Called after each trimming operation.
#
# @type success: bool
# @param success: Indicates if the last trim operation was successful.
#
# @rtype: int
# @return: The next trim index (0 to max number of steps) where max
# number of steps indicates the trimming is done.
# '''
# global ...
#
# if not success:
# # Restore last known successful input, determine next index
# else:
# # Just determine the next index, based on what was successfully
# # removed in the last step
#
# return next_index
#
# def post_process(buf):
# '''
# Called just before the execution to write the test case in the format
# expected by the target
#
# @type buf: bytearray
# @param buf: The buffer containing the test case to be executed
#
# @rtype: bytearray
# @return: The buffer containing the test case after
# '''
# return buf
#
# def havoc_mutation(buf, max_size):
# '''
# Perform a single custom mutation on a given input.
#
# @type buf: bytearray
# @param buf: The buffer that should be mutated.
#
# @type max_size: int
# @param max_size: Maximum size of the mutated output. The mutation must not
# produce data larger than max_size.
#
# @rtype: bytearray
# @return: A new bytearray containing the mutated data
# '''
# return mutated_buf
#
# def havoc_mutation_probability():
# '''
# Called for each `havoc_mutation`. Return the probability (in percentage)
# that `havoc_mutation` is called in havoc. Be default it is 6%.
#
# @rtype: int
# @return: The probability (0-100)
# '''
# return prob
#
# def queue_get(filename):
# '''
# Called at the beginning of each fuzz iteration to determine whether the
# test case should be fuzzed
#
# @type filename: str
# @param filename: File name of the test case in the current queue entry
#
# @rtype: bool
# @return: Return True if the custom mutator decides to fuzz the test case,
# and False otherwise
# '''
# return True
#
# def queue_new_entry(filename_new_queue, filename_orig_queue):
# '''
# Called after adding a new test case to the queue
#
# @type filename_new_queue: str
# @param filename_new_queue: File name of the new queue entry
#
# @type filename_orig_queue: str
# @param filename_orig_queue: File name of the original queue entry
# '''
# pass

View File

@ -0,0 +1,165 @@
/*
american fuzzy lop++ - postprocessor library example
--------------------------------------------------
Originally written by Michal Zalewski
Edited by Dominik Maier, 2020
Copyright 2015 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0
Postprocessor libraries can be passed to afl-fuzz to perform final cleanup
of any mutated test cases - for example, to fix up checksums in PNG files.
Please heed the following warnings:
1) In almost all cases, it is more productive to comment out checksum logic
in the targeted binary (as shown in ../libpng_no_checksum/). One possible
exception is the process of fuzzing binary-only software in QEMU mode.
2) The use of postprocessors for anything other than checksums is
questionable and may cause more harm than good. AFL is normally pretty good
about dealing with length fields, magic values, etc.
3) Postprocessors that do anything non-trivial must be extremely robust to
gracefully handle malformed data and other error conditions - otherwise,
they will crash and take afl-fuzz down with them. Be wary of reading past
*len and of integer overflows when calculating file offsets.
In other words, THIS IS PROBABLY NOT WHAT YOU WANT - unless you really,
honestly know what you're doing =)
With that out of the way: the postprocessor library is passed to afl-fuzz
via AFL_POST_LIBRARY. The library must be compiled with:
gcc -shared -Wall -O3 post_library.so.c -o post_library.so
AFL will call the afl_custom_post_process() function for every mutated output
buffer. From there, you have three choices:
1) If you don't want to modify the test case, simply set `*out_buf = in_buf`
and return the original `len`.
2) If you want to skip this test case altogether and have AFL generate a
new one, return 0 or set `*out_buf = NULL`.
Use this sparingly - it's faster than running the target program
with patently useless inputs, but still wastes CPU time.
3) If you want to modify the test case, allocate an appropriately-sized
buffer, move the data into that buffer, make the necessary changes, and
then return the new pointer as out_buf. Return an appropriate len
afterwards.
Note that the buffer will *not* be freed for you. To avoid memory leaks,
you need to free it or reuse it on subsequent calls (as shown below).
*** Feel free to reuse the original 'in_buf' BUFFER and return it. ***
Aight. The example below shows a simple postprocessor that tries to make
sure that all input files start with "GIF89a".
PS. If you don't like C, you can try out the unix-based wrapper from
Ben Nagy instead: https://github.com/bnagy/aflfix
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* Header that must be present at the beginning of every test case: */
#define HEADER "GIF89a"
typedef struct post_state {
unsigned char *buf;
size_t size;
} post_state_t;
void *afl_custom_init(void *afl) {
post_state_t *state = malloc(sizeof(post_state_t));
if (!state) {
perror("malloc");
return NULL;
}
state->buf = calloc(sizeof(unsigned char), 4096);
if (!state->buf) {
free(state);
perror("calloc");
return NULL;
}
return state;
}
/* The actual postprocessor routine called by afl-fuzz: */
size_t afl_custom_post_process(post_state_t *data, unsigned char *in_buf,
unsigned int len, unsigned char **out_buf) {
/* Skip execution altogether for buffers shorter than 6 bytes (just to
show how it's done). We can trust len to be sane. */
if (len < strlen(HEADER)) return 0;
/* Do nothing for buffers that already start with the expected header. */
if (!memcmp(in_buf, HEADER, strlen(HEADER))) {
*out_buf = in_buf;
return len;
}
/* Allocate memory for new buffer, reusing previous allocation if
possible. */
*out_buf = realloc(data->buf, len);
/* If we're out of memory, the most graceful thing to do is to return the
original buffer and give up on modifying it. Let AFL handle OOM on its
own later on. */
if (!*out_buf) {
*out_buf = in_buf;
return len;
}
/* Copy the original data to the new location. */
memcpy(*out_buf, in_buf, len);
/* Insert the new header. */
memcpy(*out_buf, HEADER, strlen(HEADER));
/* Return the new len. It hasn't changed, so it's just len. */
return len;
}
/* Gets called afterwards */
void afl_custom_deinit(post_state_t *data) {
free(data->buf);
free(data);
}

View File

@ -0,0 +1,163 @@
/*
american fuzzy lop++ - postprocessor for PNG
------------------------------------------
Originally written by Michal Zalewski
Copyright 2015 Google Inc. All rights reserved.
Adapted to the new API, 2020 by Dominik Maier
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0
See post_library.so.c for a general discussion of how to implement
postprocessors. This specific postprocessor attempts to fix up PNG
checksums, providing a slightly more complicated example than found
in post_library.so.c.
Compile with:
gcc -shared -Wall -O3 post_library_png.so.c -o post_library_png.so -lz
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <zlib.h>
#include <arpa/inet.h>
/* A macro to round an integer up to 4 kB. */
#define UP4K(_i) ((((_i) >> 12) + 1) << 12)
typedef struct post_state {
unsigned char *buf;
size_t size;
} post_state_t;
void *afl_custom_init(void *afl) {
post_state_t *state = malloc(sizeof(post_state_t));
if (!state) {
perror("malloc");
return NULL;
}
state->buf = calloc(sizeof(unsigned char), 4096);
if (!state->buf) {
free(state);
perror("calloc");
return NULL;
}
return state;
}
size_t afl_custom_post_process(post_state_t *data, const unsigned char *in_buf,
unsigned int len,
const unsigned char **out_buf) {
unsigned char *new_buf = (unsigned char *)in_buf;
unsigned int pos = 8;
/* Don't do anything if there's not enough room for the PNG header
(8 bytes). */
if (len < 8) {
*out_buf = in_buf;
return len;
}
/* Minimum size of a zero-length PNG chunk is 12 bytes; if we
don't have that, we can bail out. */
while (pos + 12 <= len) {
unsigned int chunk_len, real_cksum, file_cksum;
/* Chunk length is the first big-endian dword in the chunk. */
chunk_len = ntohl(*(uint32_t *)(in_buf + pos));
/* Bail out if chunk size is too big or goes past EOF. */
if (chunk_len > 1024 * 1024 || pos + 12 + chunk_len > len) break;
/* Chunk checksum is calculated for chunk ID (dword) and the actual
payload. */
real_cksum = htonl(crc32(0, in_buf + pos + 4, chunk_len + 4));
/* The in-file checksum is the last dword past the chunk data. */
file_cksum = *(uint32_t *)(in_buf + pos + 8 + chunk_len);
/* If the checksums do not match, we need to fix the file. */
if (real_cksum != file_cksum) {
/* First modification? Make a copy of the input buffer. Round size
up to 4 kB to minimize the number of reallocs needed. */
if (new_buf == in_buf) {
if (len <= data->size) {
new_buf = data->buf;
} else {
new_buf = realloc(data->buf, UP4K(len));
if (!new_buf) {
*out_buf = in_buf;
return len;
}
data->buf = new_buf;
data->size = UP4K(len);
memcpy(new_buf, in_buf, len);
}
}
*(uint32_t *)(new_buf + pos + 8 + chunk_len) = real_cksum;
}
/* Skip the entire chunk and move to the next one. */
pos += 12 + chunk_len;
}
*out_buf = new_buf;
return len;
}
/* Gets called afterwards */
void afl_custom_deinit(post_state_t *data) {
free(data->buf);
free(data);
}

View File

@ -0,0 +1,64 @@
#!/usr/bin/env python
# encoding: utf-8
'''
Simple Chunk Cross-Over Replacement Module for AFLFuzz
@author: Christian Holler (:decoder)
@license:
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
@contact: choller@mozilla.com
'''
import random
def init(seed):
'''
Called once when AFLFuzz starts up. Used to seed our RNG.
@type seed: int
@param seed: A 32-bit random value
'''
# Seed our RNG
random.seed(seed)
def fuzz(buf, add_buf, max_size):
'''
Called per fuzzing iteration.
@type buf: bytearray
@param buf: The buffer that should be mutated.
@type add_buf: bytearray
@param add_buf: A second buffer that can be used as mutation source.
@type max_size: int
@param max_size: Maximum size of the mutated output. The mutation must not
produce data larger than max_size.
@rtype: bytearray
@return: A new bytearray containing the mutated data
'''
# Make a copy of our input buffer for returning
ret = bytearray(buf)
# Take a random fragment length between 2 and 32 (or less if add_buf is shorter)
fragment_len = random.randint(1, min(len(add_buf), 32))
# Determine a random source index where to take the data chunk from
rand_src_idx = random.randint(0, len(add_buf) - fragment_len)
# Determine a random destination index where to put the data chunk
rand_dst_idx = random.randint(0, len(buf))
# Make the chunk replacement
ret[rand_dst_idx:rand_dst_idx + fragment_len] = add_buf[rand_src_idx:rand_src_idx + fragment_len]
# Return data
return ret

View File

@ -0,0 +1,74 @@
// This simple example just creates random buffer <= 100 filled with 'A'
// needs -I /path/to/AFLplusplus/include
#include "custom_mutator_helpers.h"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#ifndef _FIXED_CHAR
#define _FIXED_CHAR 0x41
#endif
typedef struct my_mutator {
afl_t *afl;
// Reused buffers:
BUF_VAR(u8, fuzz);
} my_mutator_t;
my_mutator_t *afl_custom_init(afl_t *afl, unsigned int seed) {
srand(seed);
my_mutator_t *data = calloc(1, sizeof(my_mutator_t));
if (!data) {
perror("afl_custom_init alloc");
return NULL;
}
data->afl = afl;
return data;
}
size_t afl_custom_fuzz(my_mutator_t *data, uint8_t *buf, size_t buf_size,
u8 **out_buf, uint8_t *add_buf,
size_t add_buf_size, // add_buf can be NULL
size_t max_size) {
int size = (rand() % 100) + 1;
if (size > max_size) size = max_size;
u8 *mutated_out = maybe_grow(BUF_PARAMS(data, fuzz), size);
if (!mutated_out) {
*out_buf = NULL;
perror("custom mutator allocation (maybe_grow)");
return 0; /* afl-fuzz will very likely error out after this. */
}
memset(mutated_out, _FIXED_CHAR, size);
*out_buf = mutated_out;
return size;
}
/**
* Deinitialize everything
*
* @param data The data ptr from afl_custom_init
*/
void afl_custom_deinit(my_mutator_t *data) {
free(data->fuzz_buf);
free(data);
}

View File

@ -0,0 +1,118 @@
#!/usr/bin/env python
from XmlMutatorMin import XmlMutatorMin
# Default settings (production mode)
__mutator__ = None
__seed__ = "RANDOM"
__log__ = False
__log_file__ = "wrapper.log"
# AFL functions
def log(text):
"""
Logger
"""
global __seed__
global __log__
global __log_file__
if __log__:
with open(__log_file__, "a") as logf:
logf.write("[%s] %s\n" % (__seed__, text))
def init(seed):
"""
Called once when AFL starts up. Seed is used to identify the AFL instance in log files
"""
global __mutator__
global __seed__
# Get the seed
__seed__ = seed
# Create a global mutation class
try:
__mutator__ = XmlMutatorMin(__seed__, verbose=__log__)
log("init(): Mutator created")
except RuntimeError as e:
log("init(): Can't create mutator: %s" % e.message)
def fuzz(buf, add_buf, max_size):
"""
Called for each fuzzing iteration.
"""
global __mutator__
# Do we have a working mutator object?
if __mutator__ is None:
log("fuzz(): Can't fuzz, no mutator available")
return buf
# Try to use the AFL buffer
via_buffer = True
# Interpret the AFL buffer (an array of bytes) as a string
if via_buffer:
try:
buf_str = str(buf)
log("fuzz(): AFL buffer converted to a string")
except Exception:
via_buffer = False
log("fuzz(): Can't convert AFL buffer to a string")
# Load XML from the AFL string
if via_buffer:
try:
__mutator__.init_from_string(buf_str)
log("fuzz(): Mutator successfully initialized with AFL buffer (%d bytes)" % len(buf_str))
except Exception:
via_buffer = False
log("fuzz(): Can't initialize mutator with AFL buffer")
# If init from AFL buffer wasn't succesful
if not via_buffer:
log("fuzz(): Returning unmodified AFL buffer")
return buf
# Sucessful initialization -> mutate
try:
__mutator__.mutate(max=5)
log("fuzz(): Input mutated")
except Exception:
log("fuzz(): Can't mutate input => returning buf")
return buf
# Convert mutated data to a array of bytes
try:
data = bytearray(__mutator__.save_to_string())
log("fuzz(): Mutated data converted as bytes")
except Exception:
log("fuzz(): Can't convert mutated data to bytes => returning buf")
return buf
# Everything went fine, returning mutated content
log("fuzz(): Returning %d bytes" % len(data))
return data
# Main (for debug)
if __name__ == '__main__':
__log__ = True
__log_file__ = "/dev/stdout"
__seed__ = "RANDOM"
init(__seed__)
in_1 = bytearray("<foo ddd='eeee'>ffff<a b='c' d='456' eee='ffffff'>zzzzzzzzzzzz</a><b yyy='YYY' zzz='ZZZ'></b></foo>")
in_2 = bytearray("<abc abc123='456' abcCBA='ppppppppppppppppppppppppppppp'/>")
out = fuzz(in_1, in_2)
print(out)