Merge pull request #649 from AFLplusplus/skim_romu

switch to romu and skim
This commit is contained in:
van Hauser 2020-12-21 11:19:18 +01:00 committed by GitHub
commit 47e04548d4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 462 additions and 348 deletions

View File

@ -42,8 +42,8 @@ endif
ifdef ASAN_BUILD
$(info Compiling ASAN version of binaries)
override CFLAGS+=$(ASAN_CFLAGS)
LDFLAGS+=$(ASAN_LDFLAGS)
override CFLAGS += $(ASAN_CFLAGS)
LDFLAGS += $(ASAN_LDFLAGS)
endif
ifdef UBSAN_BUILD
$(info Compiling UBSAN version of binaries)
@ -77,30 +77,34 @@ ifeq "$(shell echo 'int main() {return 0; }' | $(CC) -fno-move-loop-invariants -
SPECIAL_PERFORMANCE += -fno-move-loop-invariants -fdisable-tree-cunrolli
endif
ifeq "$(shell echo 'int main() {return 0; }' | $(CC) $(CFLAGS) -Werror -x c - -march=native -o .test 2>/dev/null && echo 1 || echo 0 ; rm -f .test )" "1"
ifndef SOURCE_DATE_EPOCH
HAVE_MARCHNATIVE = 1
CFLAGS_OPT += -march=native
endif
endif
ifneq "$(shell uname)" "Darwin"
ifeq "$(shell echo 'int main() {return 0; }' | $(CC) $(CFLAGS) -Werror -x c - -march=native -o .test 2>/dev/null && echo 1 || echo 0 ; rm -f .test )" "1"
ifndef SOURCE_DATE_EPOCH
#CFLAGS_OPT += -march=native
SPECIAL_PERFORMANCE += -march=native
endif
endif
ifeq "$(HAVE_MARCHNATIVE)" "1"
SPECIAL_PERFORMANCE += -march=native
endif
# OS X does not like _FORTIFY_SOURCE=2
ifndef DEBUG
CFLAGS_OPT += -D_FORTIFY_SOURCE=2
endif
ifndef DEBUG
CFLAGS_OPT += -D_FORTIFY_SOURCE=2
endif
endif
ifeq "$(shell uname)" "SunOS"
CFLAGS_OPT += -Wno-format-truncation
LDFLAGS=-lkstat -lrt
CFLAGS_OPT += -Wno-format-truncation
LDFLAGS = -lkstat -lrt
endif
ifdef STATIC
$(info Compiling static version of binaries, disabling python though)
# Disable python for static compilation to simplify things
PYTHON_OK=0
PYTHON_OK = 0
PYFLAGS=
PYTHON_INCLUDE=/
PYTHON_INCLUDE = /
CFLAGS_OPT += -static
LDFLAGS += -lm -lpthread -lz -lutil
@ -117,6 +121,7 @@ ifdef INTROSPECTION
CFLAGS_OPT += -DINTROSPECTION=1
endif
ifneq "$(shell uname -m)" "x86_64"
ifneq "$(patsubst i%86,i386,$(shell uname -m))" "i386"
ifneq "$(shell uname -m)" "amd64"
@ -131,7 +136,7 @@ ifdef DEBUG
$(info Compiling DEBUG version of binaries)
CFLAGS += -ggdb3 -O0 -Wall -Wextra -Werror
else
CFLAGS ?= -O3 -funroll-loops $(CFLAGS_OPT)
CFLAGS ?= -O3 -funroll-loops $(CFLAGS_OPT)
endif
override CFLAGS += -g -Wno-pointer-sign -Wno-variadic-macros -Wall -Wextra -Wpointer-arith \

View File

@ -10,8 +10,10 @@ sending a mail to <afl-users+subscribe@googlegroups.com>.
### Version ++3.01a (release)
- fix crash for very, very fast targets+systems (thanks to mhlakhani
for reporting)
- afl-fuzz
- fix crash for very, very fast targets+systems, thanks for reporting @mhlakhani
- switched to a faster RNG
- added hghwng's patch for faster trace map analysis
- added dummy Makefile to instrumentation/
- afl-cc
- allow instrumenting LLVMFuzzerTestOneInput

View File

@ -134,6 +134,12 @@
// Little helper to access the ptr to afl->##name_buf - for use in afl_realloc.
#define AFL_BUF_PARAM(name) ((void **)&afl->name##_buf)
#ifdef WORD_SIZE_64
#define AFL_RAND_RETURN u64
#else
#define AFL_RAND_RETURN u32
#endif
extern s8 interesting_8[INTERESTING_8_LEN];
extern s16 interesting_16[INTERESTING_8_LEN + INTERESTING_16_LEN];
extern s32
@ -580,7 +586,7 @@ typedef struct afl_state {
u32 rand_cnt; /* Random number counter */
u64 rand_seed[4];
u64 rand_seed[3];
s64 init_seed;
u64 total_cal_us, /* Total calibration time (us) */
@ -1014,13 +1020,9 @@ void write_bitmap(afl_state_t *);
u32 count_bits(afl_state_t *, u8 *);
u32 count_bytes(afl_state_t *, u8 *);
u32 count_non_255_bytes(afl_state_t *, u8 *);
#ifdef WORD_SIZE_64
void simplify_trace(afl_state_t *, u64 *);
void simplify_trace(afl_state_t *, u8 *);
void classify_counts(afl_forkserver_t *);
#else
void simplify_trace(afl_state_t *, u32 *);
void classify_counts(afl_forkserver_t *);
#endif
void discover_word(u8 *ret, u64 *current, u64 *virgin);
void init_count_class16(void);
void minimize_bits(afl_state_t *, u8 *, u8 *);
#ifndef SIMPLE_FILES
@ -1028,6 +1030,7 @@ u8 *describe_op(afl_state_t *, u8, size_t);
#endif
u8 save_if_interesting(afl_state_t *, void *, u32, u8);
u8 has_new_bits(afl_state_t *, u8 *);
u8 has_new_bits_unclassified(afl_state_t *, u8 *);
/* Extras */
@ -1111,8 +1114,7 @@ u8 common_fuzz_cmplog_stuff(afl_state_t *afl, u8 *out_buf, u32 len);
u8 input_to_state_stage(afl_state_t *afl, u8 *orig_buf, u8 *buf, u32 len,
u64 exec_cksum);
/* xoshiro256** */
uint64_t rand_next(afl_state_t *afl);
AFL_RAND_RETURN rand_next(afl_state_t *afl);
/* probability between 0.0 and 1.0 */
double rand_next_percent(afl_state_t *afl);

112
include/coverage-32.h Normal file
View File

@ -0,0 +1,112 @@
#include "config.h"
#include "types.h"
u32 skim(const u32 *virgin, const u32 *current, const u32 *current_end);
u32 classify_word(u32 word);
inline u32 classify_word(u32 word) {
u16 mem16[2];
memcpy(mem16, &word, sizeof(mem16));
mem16[0] = count_class_lookup16[mem16[0]];
mem16[1] = count_class_lookup16[mem16[1]];
memcpy(&word, mem16, sizeof(mem16));
return word;
}
void simplify_trace(afl_state_t *afl, u8 *bytes) {
u32 *mem = (u32 *)fsrv->trace_bits;
u32 i = (fsrv->map_size >> 2);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) {
u8 *mem8 = (u8 *)mem;
mem8[0] = simplify_lookup[mem8[0]];
mem8[1] = simplify_lookup[mem8[1]];
mem8[2] = simplify_lookup[mem8[2]];
mem8[3] = simplify_lookup[mem8[3]];
} else
*mem = 0x01010101;
mem++;
}
}
inline void classify_counts(u8 *bytes) {
u64 *mem = (u64 *)bytes;
u32 i = MAP_SIZE >> 2;
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) { *mem = classify_word(*mem); }
mem++;
}
}
/* Updates the virgin bits, then reflects whether a new count or a new tuple is
* seen in ret. */
inline void discover_word(u8 *ret, u32 *current, u32 *virgin) {
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
that have not been already cleared from the virgin map - since this will
almost always be the case. */
if (*current & *virgin) {
if (likely(*ret < 2)) {
u8 *cur = (u8 *)current;
u8 *vir = (u8 *)virgin;
/* Looks like we have not found any new bytes yet; see if any non-zero
bytes in current[] are pristine in virgin[]. */
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff))
*ret = 2;
else
*ret = 1;
}
*virgin &= ~*current;
}
}
#define PACK_SIZE 16
inline u32 skim(const u32 *virgin, const u32 *current, const u32 *current_end) {
for (; current != current_end; virgin += 4, current += 4) {
if (current[0] && classify_word(current[0]) & virgin[0]) return 1;
if (current[1] && classify_word(current[1]) & virgin[1]) return 1;
if (current[2] && classify_word(current[2]) & virgin[2]) return 1;
if (current[3] && classify_word(current[3]) & virgin[3]) return 1;
}
return 0;
}

189
include/coverage-64.h Normal file
View File

@ -0,0 +1,189 @@
#include "config.h"
#include "types.h"
#if (defined(__AVX512F__) && defined(__AVX512DQ__)) || defined(__AVX2__)
#include <immintrin.h>
#endif
u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end);
u64 classify_word(u64 word);
inline u64 classify_word(u64 word) {
u16 mem16[4];
memcpy(mem16, &word, sizeof(mem16));
mem16[0] = count_class_lookup16[mem16[0]];
mem16[1] = count_class_lookup16[mem16[1]];
mem16[2] = count_class_lookup16[mem16[2]];
mem16[3] = count_class_lookup16[mem16[3]];
memcpy(&word, mem16, sizeof(mem16));
return word;
}
void simplify_trace(afl_state_t *afl, u8 *bytes) {
u64 *mem = (u64 *)bytes;
u32 i = (afl->fsrv.map_size >> 3);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) {
u8 *mem8 = (u8 *)mem;
mem8[0] = simplify_lookup[mem8[0]];
mem8[1] = simplify_lookup[mem8[1]];
mem8[2] = simplify_lookup[mem8[2]];
mem8[3] = simplify_lookup[mem8[3]];
mem8[4] = simplify_lookup[mem8[4]];
mem8[5] = simplify_lookup[mem8[5]];
mem8[6] = simplify_lookup[mem8[6]];
mem8[7] = simplify_lookup[mem8[7]];
} else
*mem = 0x0101010101010101ULL;
mem++;
}
}
inline void classify_counts(afl_forkserver_t *fsrv) {
u64 *mem = (u64 *)fsrv->trace_bits;
u32 i = (fsrv->map_size >> 3);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) { *mem = classify_word(*mem); }
mem++;
}
}
/* Updates the virgin bits, then reflects whether a new count or a new tuple is
* seen in ret. */
inline void discover_word(u8 *ret, u64 *current, u64 *virgin) {
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
that have not been already cleared from the virgin map - since this will
almost always be the case. */
if (*current & *virgin) {
if (likely(*ret < 2)) {
u8 *cur = (u8 *)current;
u8 *vir = (u8 *)virgin;
/* Looks like we have not found any new bytes yet; see if any non-zero
bytes in current[] are pristine in virgin[]. */
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff) ||
(cur[4] && vir[4] == 0xff) || (cur[5] && vir[5] == 0xff) ||
(cur[6] && vir[6] == 0xff) || (cur[7] && vir[7] == 0xff))
*ret = 2;
else
*ret = 1;
}
*virgin &= ~*current;
}
}
#if defined(__AVX512F__) && defined(__AVX512DQ__)
#define PACK_SIZE 64
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
for (; current != current_end; virgin += 8, current += 8) {
__m512i value = *(__m512i *)current;
__mmask8 mask = _mm512_testn_epi64_mask(value, value);
/* All bytes are zero. */
if (mask == 0xff) continue;
/* Look for nonzero bytes and check for new bits. */
#define UNROLL(x) \
if (!(mask & (1 << x)) && classify_word(current[x]) & virgin[x]) return 1
UNROLL(0);
UNROLL(1);
UNROLL(2);
UNROLL(3);
UNROLL(4);
UNROLL(5);
UNROLL(6);
UNROLL(7);
#undef UNROLL
}
return 0;
}
#endif
#if !defined(PACK_SIZE) && defined(__AVX2__)
#define PACK_SIZE 32
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
__m256i zeroes = _mm256_setzero_si256();
for (; current != current_end; virgin += 4, current += 4) {
__m256i value = *(__m256i *)current;
__m256i cmp = _mm256_cmpeq_epi64(value, zeroes);
u32 mask = _mm256_movemask_epi8(cmp);
/* All bytes are zero. */
if (mask == (u32)-1) continue;
/* Look for nonzero bytes and check for new bits. */
if (!(mask & 0xff) && classify_word(current[0]) & virgin[0]) return 1;
if (!(mask & 0xff00) && classify_word(current[1]) & virgin[1]) return 1;
if (!(mask & 0xff0000) && classify_word(current[2]) & virgin[2]) return 1;
if (!(mask & 0xff000000) && classify_word(current[3]) & virgin[3]) return 1;
}
return 0;
}
#endif
#if !defined(PACK_SIZE)
#define PACK_SIZE 32
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
for (; current != current_end; virgin += 4, current += 4) {
if (current[0] && classify_word(current[0]) & virgin[0]) return 1;
if (current[1] && classify_word(current[1]) & virgin[1]) return 1;
if (current[2] && classify_word(current[2]) & virgin[2]) return 1;
if (current[3] && classify_word(current[3]) & virgin[3]) return 1;
}
return 0;
}
#endif

View File

@ -236,8 +236,8 @@ static void __afl_map_shm(void) {
if (__afl_final_loc) {
if (__afl_final_loc % 8)
__afl_final_loc = (((__afl_final_loc + 7) >> 3) << 3);
if (__afl_final_loc % 32)
__afl_final_loc = (((__afl_final_loc + 31) >> 5) << 5);
__afl_map_size = __afl_final_loc;
if (__afl_final_loc > MAP_SIZE) {

View File

@ -641,11 +641,11 @@ void afl_fsrv_start(afl_forkserver_t *fsrv, char **argv,
if (!fsrv->map_size) { fsrv->map_size = MAP_SIZE; }
if (unlikely(tmp_map_size % 8)) {
if (unlikely(tmp_map_size % 32)) {
// should not happen
WARNF("Target reported non-aligned map size of %u", tmp_map_size);
tmp_map_size = (((tmp_map_size + 8) >> 3) << 3);
tmp_map_size = (((tmp_map_size + 31) >> 5) << 5);
}

View File

@ -49,101 +49,6 @@ void write_bitmap(afl_state_t *afl) {
}
/* Check if the current execution path brings anything new to the table.
Update virgin bits to reflect the finds. Returns 1 if the only change is
the hit-count for a particular tuple; 2 if there are new tuples seen.
Updates the map, so subsequent calls will always return 0.
This function is called after every exec() on a fairly large buffer, so
it needs to be fast. We do this in 32-bit and 64-bit flavors. */
u8 __attribute__((hot)) has_new_bits(afl_state_t *afl, u8 *virgin_map) {
#ifdef WORD_SIZE_64
u64 *current = (u64 *)afl->fsrv.trace_bits;
u64 *virgin = (u64 *)virgin_map;
u32 i = (afl->fsrv.map_size >> 3);
#else
u32 *current = (u32 *)afl->fsrv.trace_bits;
u32 *virgin = (u32 *)virgin_map;
u32 i = (afl->fsrv.map_size >> 2);
#endif /* ^WORD_SIZE_64 */
// the map size must be a minimum of 8 bytes.
// for variable/dynamic map sizes this is ensured in the forkserver
u8 ret = 0;
while (i--) {
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
that have not been already cleared from the virgin map - since this will
almost always be the case. */
// the (*current) is unnecessary but speeds up the overall comparison
if (unlikely(*current) && unlikely(*current & *virgin)) {
if (likely(ret < 2)) {
u8 *cur = (u8 *)current;
u8 *vir = (u8 *)virgin;
/* Looks like we have not found any new bytes yet; see if any non-zero
bytes in current[] are pristine in virgin[]. */
#ifdef WORD_SIZE_64
if (*virgin == 0xffffffffffffffff || (cur[0] && vir[0] == 0xff) ||
(cur[1] && vir[1] == 0xff) || (cur[2] && vir[2] == 0xff) ||
(cur[3] && vir[3] == 0xff) || (cur[4] && vir[4] == 0xff) ||
(cur[5] && vir[5] == 0xff) || (cur[6] && vir[6] == 0xff) ||
(cur[7] && vir[7] == 0xff)) {
ret = 2;
} else {
ret = 1;
}
#else
if (*virgin == 0xffffffff || (cur[0] && vir[0] == 0xff) ||
(cur[1] && vir[1] == 0xff) || (cur[2] && vir[2] == 0xff) ||
(cur[3] && vir[3] == 0xff))
ret = 2;
else
ret = 1;
#endif /* ^WORD_SIZE_64 */
}
*virgin &= ~*current;
}
++current;
++virgin;
}
if (unlikely(ret) && likely(virgin_map == afl->virgin_bits)) {
afl->bitmap_changed = 1;
}
return ret;
}
/* Count the number of bits set in the provided bitmap. Used for the status
screen several times every second, does not have to be fast. */
@ -242,77 +147,11 @@ const u8 simplify_lookup[256] = {
};
#ifdef WORD_SIZE_64
void simplify_trace(afl_state_t *afl, u64 *mem) {
u32 i = (afl->fsrv.map_size >> 3);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) {
u8 *mem8 = (u8 *)mem;
mem8[0] = simplify_lookup[mem8[0]];
mem8[1] = simplify_lookup[mem8[1]];
mem8[2] = simplify_lookup[mem8[2]];
mem8[3] = simplify_lookup[mem8[3]];
mem8[4] = simplify_lookup[mem8[4]];
mem8[5] = simplify_lookup[mem8[5]];
mem8[6] = simplify_lookup[mem8[6]];
mem8[7] = simplify_lookup[mem8[7]];
} else {
*mem = 0x0101010101010101ULL;
}
++mem;
}
}
#else
void simplify_trace(afl_state_t *afl, u32 *mem) {
u32 i = (afl->fsrv.map_size >> 2);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) {
u8 *mem8 = (u8 *)mem;
mem8[0] = simplify_lookup[mem8[0]];
mem8[1] = simplify_lookup[mem8[1]];
mem8[2] = simplify_lookup[mem8[2]];
mem8[3] = simplify_lookup[mem8[3]];
} else
*mem = 0x01010101;
++mem;
}
}
#endif /* ^WORD_SIZE_64 */
/* Destructively classify execution counts in a trace. This is used as a
preprocessing step for any newly acquired traces. Called on every exec,
must be fast. */
static const u8 count_class_lookup8[256] = {
const u8 count_class_lookup8[256] = {
[0] = 0,
[1] = 1,
@ -326,7 +165,7 @@ static const u8 count_class_lookup8[256] = {
};
static u16 count_class_lookup16[65536];
u16 count_class_lookup16[65536];
void init_count_class16(void) {
@ -345,63 +184,87 @@ void init_count_class16(void) {
}
/* Import coverage processing routines. */
#ifdef WORD_SIZE_64
#include "coverage-64.h"
#else
#include "coverage-32.h"
#endif
/* Check if the current execution path brings anything new to the table.
Update virgin bits to reflect the finds. Returns 1 if the only change is
the hit-count for a particular tuple; 2 if there are new tuples seen.
Updates the map, so subsequent calls will always return 0.
This function is called after every exec() on a fairly large buffer, so
it needs to be fast. We do this in 32-bit and 64-bit flavors. */
inline u8 has_new_bits(afl_state_t *afl, u8 *virgin_map) {
#ifdef WORD_SIZE_64
void __attribute__((hot)) classify_counts(afl_forkserver_t *fsrv) {
u64 *current = (u64 *)afl->fsrv.trace_bits;
u64 *virgin = (u64 *)virgin_map;
u64 *mem = (u64 *)fsrv->trace_bits;
u32 i = (fsrv->map_size >> 3);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) {
u16 *mem16 = (u16 *)mem;
mem16[0] = count_class_lookup16[mem16[0]];
mem16[1] = count_class_lookup16[mem16[1]];
mem16[2] = count_class_lookup16[mem16[2]];
mem16[3] = count_class_lookup16[mem16[3]];
}
++mem;
}
}
u32 i = (afl->fsrv.map_size >> 3);
#else
void __attribute__((hot)) classify_counts(afl_forkserver_t *fsrv) {
u32 *current = (u32 *)afl->fsrv.trace_bits;
u32 *virgin = (u32 *)virgin_map;
u32 *mem = (u32 *)fsrv->trace_bits;
u32 i = (afl->fsrv.map_size >> 2);
u32 i = (fsrv->map_size >> 2);
#endif /* ^WORD_SIZE_64 */
u8 ret = 0;
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*current)) discover_word(&ret, current, virgin);
if (unlikely(*mem)) {
u16 *mem16 = (u16 *)mem;
mem16[0] = count_class_lookup16[mem16[0]];
mem16[1] = count_class_lookup16[mem16[1]];
}
++mem;
current++;
virgin++;
}
if (unlikely(ret) && likely(virgin_map == afl->virgin_bits))
afl->bitmap_changed = 1;
return ret;
}
/* A combination of classify_counts and has_new_bits. If 0 is returned, then the
* trace bits are kept as-is. Otherwise, the trace bits are overwritten with
* classified values.
*
* This accelerates the processing: in most cases, no interesting behavior
* happen, and the trace bits will be discarded soon. This function optimizes
* for such cases: one-pass scan on trace bits without modifying anything. Only
* on rare cases it fall backs to the slow path: classify_counts() first, then
* return has_new_bits(). */
inline u8 has_new_bits_unclassified(afl_state_t *afl, u8 *virgin_map) {
/* Handle the hot path first: no new coverage */
u8 *end = afl->fsrv.trace_bits + afl->fsrv.map_size;
#ifdef WORD_SIZE_64
if (!skim((u64 *)virgin_map, (u64 *)afl->fsrv.trace_bits, (u64 *)end))
return 0;
#else
if (!skim((u32 *)virgin_map, (u32 *)afl->fsrv.trace_bits, (u32 *)end))
return 0;
#endif /* ^WORD_SIZE_64 */
classify_counts(&afl->fsrv);
return has_new_bits(afl, virgin_map);
}
/* Compact trace bytes into a smaller bitmap. We effectively just drop the
count information here. This is called only sporadically, for some
@ -581,7 +444,7 @@ save_if_interesting(afl_state_t *afl, void *mem, u32 len, u8 fault) {
u8 *queue_fn = "";
u8 new_bits = '\0';
s32 fd;
u8 keeping = 0, res;
u8 keeping = 0, res, classified = 0;
u64 cksum = 0;
u8 fn[PATH_MAX];
@ -605,13 +468,17 @@ save_if_interesting(afl_state_t *afl, void *mem, u32 len, u8 fault) {
/* Keep only if there are new bits in the map, add to queue for
future fuzzing, etc. */
if (!(new_bits = has_new_bits(afl, afl->virgin_bits))) {
new_bits = has_new_bits_unclassified(afl, afl->virgin_bits);
if (likely(!new_bits)) {
if (unlikely(afl->crash_mode)) { ++afl->total_crashes; }
return 0;
}
classified = new_bits;
#ifndef SIMPLE_FILES
queue_fn = alloc_printf(
@ -715,11 +582,14 @@ save_if_interesting(afl_state_t *afl, void *mem, u32 len, u8 fault) {
if (likely(!afl->non_instrumented_mode)) {
#ifdef WORD_SIZE_64
simplify_trace(afl, (u64 *)afl->fsrv.trace_bits);
#else
simplify_trace(afl, (u32 *)afl->fsrv.trace_bits);
#endif /* ^WORD_SIZE_64 */
if (!classified) {
classify_counts(&afl->fsrv);
classified = 1;
}
simplify_trace(afl, afl->fsrv.trace_bits);
if (!has_new_bits(afl, afl->virgin_tmout)) { return keeping; }
@ -764,6 +634,7 @@ save_if_interesting(afl_state_t *afl, void *mem, u32 len, u8 fault) {
u8 new_fault;
write_to_testcase(afl, mem, len);
new_fault = fuzz_run_target(afl, &afl->fsrv, afl->hang_tmout);
classify_counts(&afl->fsrv);
/* A corner case that one user reported bumping into: increasing the
timeout actually uncovers a crash. Make sure we don't discard it if
@ -812,11 +683,14 @@ save_if_interesting(afl_state_t *afl, void *mem, u32 len, u8 fault) {
if (likely(!afl->non_instrumented_mode)) {
#ifdef WORD_SIZE_64
simplify_trace(afl, (u64 *)afl->fsrv.trace_bits);
#else
simplify_trace(afl, (u32 *)afl->fsrv.trace_bits);
#endif /* ^WORD_SIZE_64 */
if (!classified) {
classify_counts(&afl->fsrv);
classified = 1;
}
simplify_trace(afl, afl->fsrv.trace_bits);
if (!has_new_bits(afl, afl->virgin_crash)) { return keeping; }

View File

@ -62,8 +62,6 @@ fuzz_run_target(afl_state_t *afl, afl_forkserver_t *fsrv, u32 timeout) {
time_spent_start = (spec.tv_sec * 1000000000) + spec.tv_nsec;
#endif
// TODO: Don't classify for faults?
classify_counts(fsrv);
return res;
}
@ -379,6 +377,7 @@ u8 calibrate_case(afl_state_t *afl, struct queue_entry *q, u8 *use_mem,
}
classify_counts(&afl->fsrv);
cksum = hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST);
if (q->exec_cksum != cksum) {
@ -767,13 +766,14 @@ u8 trim_case(afl_state_t *afl, struct queue_entry *q, u8 *in_buf) {
write_with_gap(afl, in_buf, q->len, remove_pos, trim_avail);
fault = fuzz_run_target(afl, &afl->fsrv, afl->fsrv.exec_tmout);
++afl->trim_execs;
if (afl->stop_soon || fault == FSRV_RUN_ERROR) { goto abort_trimming; }
/* Note that we don't keep track of crashes or hangs here; maybe TODO?
*/
++afl->trim_execs;
classify_counts(&afl->fsrv);
cksum = hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST);
/* If the deletion had no impact on the trace, make it permanent. This

View File

@ -27,46 +27,50 @@
#include "xxhash.h"
#undef XXH_INLINE_ALL
/* we use xoshiro256** instead of rand/random because it is 10x faster and has
better randomness properties. */
static inline uint64_t rotl(const uint64_t x, int k) {
return (x << k) | (x >> (64 - k));
}
void rand_set_seed(afl_state_t *afl, s64 init_seed) {
afl->init_seed = init_seed;
afl->rand_seed[0] =
hash64((u8 *)&afl->init_seed, sizeof(afl->init_seed), HASH_CONST);
afl->rand_seed[1] = afl->rand_seed[0] ^ 0x1234567890abcdef;
afl->rand_seed[2] = afl->rand_seed[0] & 0x0123456789abcdef;
afl->rand_seed[3] = afl->rand_seed[0] | 0x01abcde43f567908;
afl->rand_seed[2] = (afl->rand_seed[0] & 0x1234567890abcdef) ^
(afl->rand_seed[1] | 0xfedcba9876543210);
}
inline uint64_t rand_next(afl_state_t *afl) {
#define ROTL(d, lrot) ((d << (lrot)) | (d >> (8 * sizeof(d) - (lrot))))
const uint64_t result =
rotl(afl->rand_seed[0] + afl->rand_seed[3], 23) + afl->rand_seed[0];
#ifdef WORD_SIZE_64
// romuDuoJr
inline AFL_RAND_RETURN rand_next(afl_state_t *afl) {
const uint64_t t = afl->rand_seed[1] << 17;
afl->rand_seed[2] ^= afl->rand_seed[0];
afl->rand_seed[3] ^= afl->rand_seed[1];
afl->rand_seed[1] ^= afl->rand_seed[2];
afl->rand_seed[0] ^= afl->rand_seed[3];
afl->rand_seed[2] ^= t;
afl->rand_seed[3] = rotl(afl->rand_seed[3], 45);
return result;
AFL_RAND_RETURN xp = afl->rand_seed[0];
afl->rand_seed[0] = 15241094284759029579u * afl->rand_seed[1];
afl->rand_seed[1] = afl->rand_seed[1] - xp;
afl->rand_seed[1] = ROTL(afl->rand_seed[1], 27);
return xp;
}
#else
// RomuTrio32
inline AFL_RAND_RETURN rand_next(afl_state_t *afl) {
AFL_RAND_RETURN xp = afl->rand_seed[0], yp = afl->rand_seed[1],
zp = afl->rand_seed[2];
afl->rand_seed[0] = 3323815723u * zp;
afl->rand_seed[1] = yp - xp;
afl->rand_seed[1] = ROTL(afl->rand_seed[1], 6);
afl->rand_seed[2] = zp - yp;
afl->rand_seed[2] = ROTL(afl->rand_seed[2], 22);
return xp;
}
#endif
#undef ROTL
/* returns a double between 0.000000000 and 1.000000000 */
inline double rand_next_percent(afl_state_t *afl) {
@ -75,80 +79,6 @@ inline double rand_next_percent(afl_state_t *afl) {
}
/* This is the jump function for the generator. It is equivalent
to 2^128 calls to rand_next(); it can be used to generate 2^128
non-overlapping subsequences for parallel computations. */
void jump(afl_state_t *afl) {
static const uint64_t JUMP[] = {0x180ec6d33cfd0aba, 0xd5a61266f0c9392c,
0xa9582618e03fc9aa, 0x39abdc4529b1661c};
size_t i, b;
uint64_t s0 = 0;
uint64_t s1 = 0;
uint64_t s2 = 0;
uint64_t s3 = 0;
for (i = 0; i < (sizeof(JUMP) / sizeof(*JUMP)); i++)
for (b = 0; b < 64; b++) {
if (JUMP[i] & UINT64_C(1) << b) {
s0 ^= afl->rand_seed[0];
s1 ^= afl->rand_seed[1];
s2 ^= afl->rand_seed[2];
s3 ^= afl->rand_seed[3];
}
rand_next(afl);
}
afl->rand_seed[0] = s0;
afl->rand_seed[1] = s1;
afl->rand_seed[2] = s2;
afl->rand_seed[3] = s3;
}
/* This is the long-jump function for the generator. It is equivalent to
2^192 calls to rand_next(); it can be used to generate 2^64 starting points,
from each of which jump() will generate 2^64 non-overlapping
subsequences for parallel distributed computations. */
void long_jump(afl_state_t *afl) {
static const uint64_t LONG_JUMP[] = {0x76e15d3efefdcbbf, 0xc5004e441c522fb3,
0x77710069854ee241, 0x39109bb02acbe635};
size_t i, b;
uint64_t s0 = 0;
uint64_t s1 = 0;
uint64_t s2 = 0;
uint64_t s3 = 0;
for (i = 0; i < (sizeof(LONG_JUMP) / sizeof(*LONG_JUMP)); i++)
for (b = 0; b < 64; b++) {
if (LONG_JUMP[i] & UINT64_C(1) << b) {
s0 ^= afl->rand_seed[0];
s1 ^= afl->rand_seed[1];
s2 ^= afl->rand_seed[2];
s3 ^= afl->rand_seed[3];
}
rand_next(afl);
}
afl->rand_seed[0] = s0;
afl->rand_seed[1] = s1;
afl->rand_seed[2] = s2;
afl->rand_seed[3] = s3;
}
/* we switch from afl's murmur implementation to xxh3 as it is 30% faster -
and get 64 bit hashes instead of just 32 bit. Less collisions! :-) */