mirror of
https://github.com/AFLplusplus/AFLplusplus.git
synced 2025-06-10 09:11:34 +00:00
afl-fuzz-src bitmap and queue C files
This commit is contained in:
parent
4f3c417753
commit
3b3df4e3cb
2
Makefile
2
Makefile
@ -33,7 +33,7 @@ SH_PROGS = afl-plot afl-cmin afl-whatsup afl-system-config
|
||||
CFLAGS ?= -O3 -funroll-loops
|
||||
CFLAGS += -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -I include/ \
|
||||
-DAFL_PATH=\"$(HELPER_PATH)\" -DDOC_PATH=\"$(DOC_PATH)\" \
|
||||
-DBIN_PATH=\"$(BIN_PATH)\"
|
||||
-DBIN_PATH=\"$(BIN_PATH)\" -Wno-unused-function
|
||||
|
||||
AFL_FUZZ_FILES = $(wildcard src/afl-fuzz-src/*.c)
|
||||
|
||||
|
@ -466,6 +466,34 @@ void trim_py(char**, size_t*);
|
||||
|
||||
#endif
|
||||
|
||||
/* Queue */
|
||||
|
||||
void mark_as_det_done(struct queue_entry* q);
|
||||
void mark_as_variable(struct queue_entry* q);
|
||||
void mark_as_redundant(struct queue_entry* q, u8 state);
|
||||
void add_to_queue(u8* fname, u32 len, u8 passed_det);
|
||||
void destroy_queue(void);
|
||||
void update_bitmap_score(struct queue_entry* q);
|
||||
void cull_queue(void);
|
||||
|
||||
/* Bitmap */
|
||||
|
||||
void write_bitmap(void);
|
||||
void read_bitmap(u8* fname);
|
||||
u8 has_new_bits(u8* virgin_map);
|
||||
u32 count_bits(u8* mem);
|
||||
u32 count_bytes(u8* mem);
|
||||
u32 count_non_255_bytes(u8* mem);
|
||||
#ifdef __x86_64__
|
||||
void simplify_trace(u64* mem);
|
||||
void classify_counts(u64* mem);
|
||||
#else
|
||||
void simplify_trace(u32* mem);
|
||||
void classify_counts(u32* mem);
|
||||
#endif
|
||||
void init_count_class16(void);
|
||||
void minimize_bits(u8* dst, u8* src);
|
||||
|
||||
/**** Inline routines ****/
|
||||
|
||||
/* Generate a random number (from 0 to limit - 1). This may
|
||||
@ -493,5 +521,43 @@ static inline u32 UR(u32 limit) {
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Find first power of two greater or equal to val (assuming val under
|
||||
2^63). */
|
||||
|
||||
static u64 next_p2(u64 val) {
|
||||
|
||||
u64 ret = 1;
|
||||
while (val > ret) ret <<= 1;
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
/* Get unix time in milliseconds */
|
||||
|
||||
static u64 get_cur_time(void) {
|
||||
|
||||
struct timeval tv;
|
||||
struct timezone tz;
|
||||
|
||||
gettimeofday(&tv, &tz);
|
||||
|
||||
return (tv.tv_sec * 1000ULL) + (tv.tv_usec / 1000);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Get unix time in microseconds */
|
||||
|
||||
static u64 get_cur_time_us(void) {
|
||||
|
||||
struct timeval tv;
|
||||
struct timezone tz;
|
||||
|
||||
gettimeofday(&tv, &tz);
|
||||
|
||||
return (tv.tv_sec * 1000000ULL) + tv.tv_usec;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -45,34 +45,6 @@ int select_algorithm(void) {
|
||||
}
|
||||
|
||||
|
||||
/* Get unix time in milliseconds */
|
||||
|
||||
static u64 get_cur_time(void) {
|
||||
|
||||
struct timeval tv;
|
||||
struct timezone tz;
|
||||
|
||||
gettimeofday(&tv, &tz);
|
||||
|
||||
return (tv.tv_sec * 1000ULL) + (tv.tv_usec / 1000);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Get unix time in microseconds */
|
||||
|
||||
static u64 get_cur_time_us(void) {
|
||||
|
||||
struct timeval tv;
|
||||
struct timezone tz;
|
||||
|
||||
gettimeofday(&tv, &tz);
|
||||
|
||||
return (tv.tv_sec * 1000000ULL) + tv.tv_usec;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Shuffle an array of pointers. Might be slightly biased. */
|
||||
|
||||
static void shuffle_ptrs(void** ptrs, u32 cnt) {
|
||||
@ -393,669 +365,6 @@ static u8* DTD(u64 cur_ms, u64 event_ms) {
|
||||
}
|
||||
|
||||
|
||||
/* Mark deterministic checks as done for a particular queue entry. We use the
|
||||
.state file to avoid repeating deterministic fuzzing when resuming aborted
|
||||
scans. */
|
||||
|
||||
static void mark_as_det_done(struct queue_entry* q) {
|
||||
|
||||
u8* fn = strrchr(q->fname, '/');
|
||||
s32 fd;
|
||||
|
||||
fn = alloc_printf("%s/queue/.state/deterministic_done/%s", out_dir, fn + 1);
|
||||
|
||||
fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
||||
if (fd < 0) PFATAL("Unable to create '%s'", fn);
|
||||
close(fd);
|
||||
|
||||
ck_free(fn);
|
||||
|
||||
q->passed_det = 1;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Mark as variable. Create symlinks if possible to make it easier to examine
|
||||
the files. */
|
||||
|
||||
static void mark_as_variable(struct queue_entry* q) {
|
||||
|
||||
u8 *fn = strrchr(q->fname, '/') + 1, *ldest;
|
||||
|
||||
ldest = alloc_printf("../../%s", fn);
|
||||
fn = alloc_printf("%s/queue/.state/variable_behavior/%s", out_dir, fn);
|
||||
|
||||
if (symlink(ldest, fn)) {
|
||||
|
||||
s32 fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
||||
if (fd < 0) PFATAL("Unable to create '%s'", fn);
|
||||
close(fd);
|
||||
|
||||
}
|
||||
|
||||
ck_free(ldest);
|
||||
ck_free(fn);
|
||||
|
||||
q->var_behavior = 1;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Mark / unmark as redundant (edge-only). This is not used for restoring state,
|
||||
but may be useful for post-processing datasets. */
|
||||
|
||||
static void mark_as_redundant(struct queue_entry* q, u8 state) {
|
||||
|
||||
u8* fn;
|
||||
|
||||
if (state == q->fs_redundant) return;
|
||||
|
||||
q->fs_redundant = state;
|
||||
|
||||
fn = strrchr(q->fname, '/');
|
||||
fn = alloc_printf("%s/queue/.state/redundant_edges/%s", out_dir, fn + 1);
|
||||
|
||||
if (state) {
|
||||
|
||||
s32 fd;
|
||||
|
||||
fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
||||
if (fd < 0) PFATAL("Unable to create '%s'", fn);
|
||||
close(fd);
|
||||
|
||||
} else {
|
||||
|
||||
if (unlink(fn)) PFATAL("Unable to remove '%s'", fn);
|
||||
|
||||
}
|
||||
|
||||
ck_free(fn);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Append new test case to the queue. */
|
||||
|
||||
static void add_to_queue(u8* fname, u32 len, u8 passed_det) {
|
||||
|
||||
struct queue_entry* q = ck_alloc(sizeof(struct queue_entry));
|
||||
|
||||
q->fname = fname;
|
||||
q->len = len;
|
||||
q->depth = cur_depth + 1;
|
||||
q->passed_det = passed_det;
|
||||
q->n_fuzz = 1;
|
||||
|
||||
if (q->depth > max_depth) max_depth = q->depth;
|
||||
|
||||
if (queue_top) {
|
||||
|
||||
queue_top->next = q;
|
||||
queue_top = q;
|
||||
|
||||
} else q_prev100 = queue = queue_top = q;
|
||||
|
||||
++queued_paths;
|
||||
++pending_not_fuzzed;
|
||||
|
||||
cycles_wo_finds = 0;
|
||||
|
||||
if (!(queued_paths % 100)) {
|
||||
|
||||
q_prev100->next_100 = q;
|
||||
q_prev100 = q;
|
||||
|
||||
}
|
||||
|
||||
last_path_time = get_cur_time();
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Destroy the entire queue. */
|
||||
|
||||
void destroy_queue(void) {
|
||||
|
||||
struct queue_entry *q = queue, *n;
|
||||
|
||||
while (q) {
|
||||
|
||||
n = q->next;
|
||||
ck_free(q->fname);
|
||||
ck_free(q->trace_mini);
|
||||
ck_free(q);
|
||||
q = n;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Write bitmap to file. The bitmap is useful mostly for the secret
|
||||
-B option, to focus a separate fuzzing session on a particular
|
||||
interesting input without rediscovering all the others. */
|
||||
|
||||
void write_bitmap(void) {
|
||||
|
||||
u8* fname;
|
||||
s32 fd;
|
||||
|
||||
if (!bitmap_changed) return;
|
||||
bitmap_changed = 0;
|
||||
|
||||
fname = alloc_printf("%s/fuzz_bitmap", out_dir);
|
||||
fd = open(fname, O_WRONLY | O_CREAT | O_TRUNC, 0600);
|
||||
|
||||
if (fd < 0) PFATAL("Unable to open '%s'", fname);
|
||||
|
||||
ck_write(fd, virgin_bits, MAP_SIZE, fname);
|
||||
|
||||
close(fd);
|
||||
ck_free(fname);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Read bitmap from file. This is for the -B option again. */
|
||||
|
||||
void read_bitmap(u8* fname) {
|
||||
|
||||
s32 fd = open(fname, O_RDONLY);
|
||||
|
||||
if (fd < 0) PFATAL("Unable to open '%s'", fname);
|
||||
|
||||
ck_read(fd, virgin_bits, MAP_SIZE, fname);
|
||||
|
||||
close(fd);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Check if the current execution path brings anything new to the table.
|
||||
Update virgin bits to reflect the finds. Returns 1 if the only change is
|
||||
the hit-count for a particular tuple; 2 if there are new tuples seen.
|
||||
Updates the map, so subsequent calls will always return 0.
|
||||
|
||||
This function is called after every exec() on a fairly large buffer, so
|
||||
it needs to be fast. We do this in 32-bit and 64-bit flavors. */
|
||||
|
||||
static inline u8 has_new_bits(u8* virgin_map) {
|
||||
|
||||
#ifdef __x86_64__
|
||||
|
||||
u64* current = (u64*)trace_bits;
|
||||
u64* virgin = (u64*)virgin_map;
|
||||
|
||||
u32 i = (MAP_SIZE >> 3);
|
||||
|
||||
#else
|
||||
|
||||
u32* current = (u32*)trace_bits;
|
||||
u32* virgin = (u32*)virgin_map;
|
||||
|
||||
u32 i = (MAP_SIZE >> 2);
|
||||
|
||||
#endif /* ^__x86_64__ */
|
||||
|
||||
u8 ret = 0;
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
|
||||
that have not been already cleared from the virgin map - since this will
|
||||
almost always be the case. */
|
||||
|
||||
if (unlikely(*current) && unlikely(*current & *virgin)) {
|
||||
|
||||
if (likely(ret < 2)) {
|
||||
|
||||
u8* cur = (u8*)current;
|
||||
u8* vir = (u8*)virgin;
|
||||
|
||||
/* Looks like we have not found any new bytes yet; see if any non-zero
|
||||
bytes in current[] are pristine in virgin[]. */
|
||||
|
||||
#ifdef __x86_64__
|
||||
|
||||
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
|
||||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff) ||
|
||||
(cur[4] && vir[4] == 0xff) || (cur[5] && vir[5] == 0xff) ||
|
||||
(cur[6] && vir[6] == 0xff) || (cur[7] && vir[7] == 0xff)) ret = 2;
|
||||
else ret = 1;
|
||||
|
||||
#else
|
||||
|
||||
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
|
||||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff)) ret = 2;
|
||||
else ret = 1;
|
||||
|
||||
#endif /* ^__x86_64__ */
|
||||
|
||||
}
|
||||
|
||||
*virgin &= ~*current;
|
||||
|
||||
}
|
||||
|
||||
++current;
|
||||
++virgin;
|
||||
|
||||
}
|
||||
|
||||
if (ret && virgin_map == virgin_bits) bitmap_changed = 1;
|
||||
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Count the number of bits set in the provided bitmap. Used for the status
|
||||
screen several times every second, does not have to be fast. */
|
||||
|
||||
static u32 count_bits(u8* mem) {
|
||||
|
||||
u32* ptr = (u32*)mem;
|
||||
u32 i = (MAP_SIZE >> 2);
|
||||
u32 ret = 0;
|
||||
|
||||
while (i--) {
|
||||
|
||||
u32 v = *(ptr++);
|
||||
|
||||
/* This gets called on the inverse, virgin bitmap; optimize for sparse
|
||||
data. */
|
||||
|
||||
if (v == 0xffffffff) {
|
||||
ret += 32;
|
||||
continue;
|
||||
}
|
||||
|
||||
v -= ((v >> 1) & 0x55555555);
|
||||
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
|
||||
ret += (((v + (v >> 4)) & 0xF0F0F0F) * 0x01010101) >> 24;
|
||||
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
|
||||
#define FF(_b) (0xff << ((_b) << 3))
|
||||
|
||||
/* Count the number of bytes set in the bitmap. Called fairly sporadically,
|
||||
mostly to update the status screen or calibrate and examine confirmed
|
||||
new paths. */
|
||||
|
||||
static u32 count_bytes(u8* mem) {
|
||||
|
||||
u32* ptr = (u32*)mem;
|
||||
u32 i = (MAP_SIZE >> 2);
|
||||
u32 ret = 0;
|
||||
|
||||
while (i--) {
|
||||
|
||||
u32 v = *(ptr++);
|
||||
|
||||
if (!v) continue;
|
||||
if (v & FF(0)) ++ret;
|
||||
if (v & FF(1)) ++ret;
|
||||
if (v & FF(2)) ++ret;
|
||||
if (v & FF(3)) ++ret;
|
||||
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Count the number of non-255 bytes set in the bitmap. Used strictly for the
|
||||
status screen, several calls per second or so. */
|
||||
|
||||
static u32 count_non_255_bytes(u8* mem) {
|
||||
|
||||
u32* ptr = (u32*)mem;
|
||||
u32 i = (MAP_SIZE >> 2);
|
||||
u32 ret = 0;
|
||||
|
||||
while (i--) {
|
||||
|
||||
u32 v = *(ptr++);
|
||||
|
||||
/* This is called on the virgin bitmap, so optimize for the most likely
|
||||
case. */
|
||||
|
||||
if (v == 0xffffffff) continue;
|
||||
if ((v & FF(0)) != FF(0)) ++ret;
|
||||
if ((v & FF(1)) != FF(1)) ++ret;
|
||||
if ((v & FF(2)) != FF(2)) ++ret;
|
||||
if ((v & FF(3)) != FF(3)) ++ret;
|
||||
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Destructively simplify trace by eliminating hit count information
|
||||
and replacing it with 0x80 or 0x01 depending on whether the tuple
|
||||
is hit or not. Called on every new crash or timeout, should be
|
||||
reasonably fast. */
|
||||
|
||||
static const u8 simplify_lookup[256] = {
|
||||
|
||||
[0] = 1,
|
||||
[1 ... 255] = 128
|
||||
|
||||
};
|
||||
|
||||
#ifdef __x86_64__
|
||||
|
||||
static void simplify_trace(u64* mem) {
|
||||
|
||||
u32 i = MAP_SIZE >> 3;
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for sparse bitmaps. */
|
||||
|
||||
if (unlikely(*mem)) {
|
||||
|
||||
u8* mem8 = (u8*)mem;
|
||||
|
||||
mem8[0] = simplify_lookup[mem8[0]];
|
||||
mem8[1] = simplify_lookup[mem8[1]];
|
||||
mem8[2] = simplify_lookup[mem8[2]];
|
||||
mem8[3] = simplify_lookup[mem8[3]];
|
||||
mem8[4] = simplify_lookup[mem8[4]];
|
||||
mem8[5] = simplify_lookup[mem8[5]];
|
||||
mem8[6] = simplify_lookup[mem8[6]];
|
||||
mem8[7] = simplify_lookup[mem8[7]];
|
||||
|
||||
} else *mem = 0x0101010101010101ULL;
|
||||
|
||||
++mem;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static void simplify_trace(u32* mem) {
|
||||
|
||||
u32 i = MAP_SIZE >> 2;
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for sparse bitmaps. */
|
||||
|
||||
if (unlikely(*mem)) {
|
||||
|
||||
u8* mem8 = (u8*)mem;
|
||||
|
||||
mem8[0] = simplify_lookup[mem8[0]];
|
||||
mem8[1] = simplify_lookup[mem8[1]];
|
||||
mem8[2] = simplify_lookup[mem8[2]];
|
||||
mem8[3] = simplify_lookup[mem8[3]];
|
||||
|
||||
} else *mem = 0x01010101;
|
||||
|
||||
++mem;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif /* ^__x86_64__ */
|
||||
|
||||
|
||||
/* Destructively classify execution counts in a trace. This is used as a
|
||||
preprocessing step for any newly acquired traces. Called on every exec,
|
||||
must be fast. */
|
||||
|
||||
static const u8 count_class_lookup8[256] = {
|
||||
|
||||
[0] = 0,
|
||||
[1] = 1,
|
||||
[2] = 2,
|
||||
[3] = 4,
|
||||
[4 ... 7] = 8,
|
||||
[8 ... 15] = 16,
|
||||
[16 ... 31] = 32,
|
||||
[32 ... 127] = 64,
|
||||
[128 ... 255] = 128
|
||||
|
||||
};
|
||||
|
||||
static u16 count_class_lookup16[65536];
|
||||
|
||||
|
||||
void init_count_class16(void) {
|
||||
|
||||
u32 b1, b2;
|
||||
|
||||
for (b1 = 0; b1 < 256; b1++)
|
||||
for (b2 = 0; b2 < 256; b2++)
|
||||
count_class_lookup16[(b1 << 8) + b2] =
|
||||
(count_class_lookup8[b1] << 8) |
|
||||
count_class_lookup8[b2];
|
||||
|
||||
}
|
||||
|
||||
|
||||
#ifdef __x86_64__
|
||||
|
||||
static inline void classify_counts(u64* mem) {
|
||||
|
||||
u32 i = MAP_SIZE >> 3;
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for sparse bitmaps. */
|
||||
|
||||
if (unlikely(*mem)) {
|
||||
|
||||
u16* mem16 = (u16*)mem;
|
||||
|
||||
mem16[0] = count_class_lookup16[mem16[0]];
|
||||
mem16[1] = count_class_lookup16[mem16[1]];
|
||||
mem16[2] = count_class_lookup16[mem16[2]];
|
||||
mem16[3] = count_class_lookup16[mem16[3]];
|
||||
|
||||
}
|
||||
|
||||
++mem;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static inline void classify_counts(u32* mem) {
|
||||
|
||||
u32 i = MAP_SIZE >> 2;
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for sparse bitmaps. */
|
||||
|
||||
if (unlikely(*mem)) {
|
||||
|
||||
u16* mem16 = (u16*)mem;
|
||||
|
||||
mem16[0] = count_class_lookup16[mem16[0]];
|
||||
mem16[1] = count_class_lookup16[mem16[1]];
|
||||
|
||||
}
|
||||
|
||||
++mem;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif /* ^__x86_64__ */
|
||||
|
||||
|
||||
/* Compact trace bytes into a smaller bitmap. We effectively just drop the
|
||||
count information here. This is called only sporadically, for some
|
||||
new paths. */
|
||||
|
||||
static void minimize_bits(u8* dst, u8* src) {
|
||||
|
||||
u32 i = 0;
|
||||
|
||||
while (i < MAP_SIZE) {
|
||||
|
||||
if (*(src++)) dst[i >> 3] |= 1 << (i & 7);
|
||||
++i;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Find first power of two greater or equal to val (assuming val under
|
||||
2^63). */
|
||||
|
||||
static u64 next_p2(u64 val) {
|
||||
|
||||
u64 ret = 1;
|
||||
while (val > ret) ret <<= 1;
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* When we bump into a new path, we call this to see if the path appears
|
||||
more "favorable" than any of the existing ones. The purpose of the
|
||||
"favorables" is to have a minimal set of paths that trigger all the bits
|
||||
seen in the bitmap so far, and focus on fuzzing them at the expense of
|
||||
the rest.
|
||||
|
||||
The first step of the process is to maintain a list of top_rated[] entries
|
||||
for every byte in the bitmap. We win that slot if there is no previous
|
||||
contender, or if the contender has a more favorable speed x size factor. */
|
||||
|
||||
|
||||
static void update_bitmap_score(struct queue_entry* q) {
|
||||
|
||||
u32 i;
|
||||
u64 fav_factor = q->exec_us * q->len;
|
||||
u64 fuzz_p2 = next_p2 (q->n_fuzz);
|
||||
|
||||
/* For every byte set in trace_bits[], see if there is a previous winner,
|
||||
and how it compares to us. */
|
||||
|
||||
for (i = 0; i < MAP_SIZE; ++i)
|
||||
|
||||
if (trace_bits[i]) {
|
||||
|
||||
if (top_rated[i]) {
|
||||
|
||||
/* Faster-executing or smaller test cases are favored. */
|
||||
u64 top_rated_fuzz_p2 = next_p2 (top_rated[i]->n_fuzz);
|
||||
u64 top_rated_fav_factor = top_rated[i]->exec_us * top_rated[i]->len;
|
||||
|
||||
if (fuzz_p2 > top_rated_fuzz_p2) {
|
||||
continue;
|
||||
} else if (fuzz_p2 == top_rated_fuzz_p2) {
|
||||
if (fav_factor > top_rated_fav_factor)
|
||||
continue;
|
||||
}
|
||||
|
||||
if (fav_factor > top_rated[i]->exec_us * top_rated[i]->len) continue;
|
||||
|
||||
/* Looks like we're going to win. Decrease ref count for the
|
||||
previous winner, discard its trace_bits[] if necessary. */
|
||||
|
||||
if (!--top_rated[i]->tc_ref) {
|
||||
ck_free(top_rated[i]->trace_mini);
|
||||
top_rated[i]->trace_mini = 0;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Insert ourselves as the new winner. */
|
||||
|
||||
top_rated[i] = q;
|
||||
++q->tc_ref;
|
||||
|
||||
if (!q->trace_mini) {
|
||||
q->trace_mini = ck_alloc(MAP_SIZE >> 3);
|
||||
minimize_bits(q->trace_mini, trace_bits);
|
||||
}
|
||||
|
||||
score_changed = 1;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* The second part of the mechanism discussed above is a routine that
|
||||
goes over top_rated[] entries, and then sequentially grabs winners for
|
||||
previously-unseen bytes (temp_v) and marks them as favored, at least
|
||||
until the next run. The favored entries are given more air time during
|
||||
all fuzzing steps. */
|
||||
|
||||
static void cull_queue(void) {
|
||||
|
||||
struct queue_entry* q;
|
||||
static u8 temp_v[MAP_SIZE >> 3];
|
||||
u32 i;
|
||||
|
||||
if (dumb_mode || !score_changed) return;
|
||||
|
||||
score_changed = 0;
|
||||
|
||||
memset(temp_v, 255, MAP_SIZE >> 3);
|
||||
|
||||
queued_favored = 0;
|
||||
pending_favored = 0;
|
||||
|
||||
q = queue;
|
||||
|
||||
while (q) {
|
||||
q->favored = 0;
|
||||
q = q->next;
|
||||
}
|
||||
|
||||
/* Let's see if anything in the bitmap isn't captured in temp_v.
|
||||
If yes, and if it has a top_rated[] contender, let's use it. */
|
||||
|
||||
for (i = 0; i < MAP_SIZE; ++i)
|
||||
if (top_rated[i] && (temp_v[i >> 3] & (1 << (i & 7)))) {
|
||||
|
||||
u32 j = MAP_SIZE >> 3;
|
||||
|
||||
/* Remove all bits belonging to the current entry from temp_v. */
|
||||
|
||||
while (j--)
|
||||
if (top_rated[i]->trace_mini[j])
|
||||
temp_v[j] &= ~top_rated[i]->trace_mini[j];
|
||||
|
||||
top_rated[i]->favored = 1;
|
||||
++queued_favored;
|
||||
|
||||
if (top_rated[i]->fuzz_level == 0 || !top_rated[i]->was_fuzzed) ++pending_favored;
|
||||
|
||||
}
|
||||
|
||||
q = queue;
|
||||
|
||||
while (q) {
|
||||
mark_as_redundant(q, !q->favored);
|
||||
q = q->next;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Load postprocessor, if available. */
|
||||
|
||||
static void setup_post(void) {
|
||||
|
410
src/afl-fuzz-src/bitmap.c
Normal file
410
src/afl-fuzz-src/bitmap.c
Normal file
@ -0,0 +1,410 @@
|
||||
/*
|
||||
american fuzzy lop - fuzzer code
|
||||
--------------------------------
|
||||
|
||||
Written and maintained by Michal Zalewski <lcamtuf@google.com>
|
||||
|
||||
Forkserver design by Jann Horn <jannhorn@googlemail.com>
|
||||
|
||||
Copyright 2013, 2014, 2015, 2016, 2017 Google Inc. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at:
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
This is the real deal: the program takes an instrumented binary and
|
||||
attempts a variety of basic fuzzing tricks, paying close attention to
|
||||
how they affect the execution path.
|
||||
|
||||
*/
|
||||
|
||||
#include "afl-fuzz.h"
|
||||
|
||||
/* Write bitmap to file. The bitmap is useful mostly for the secret
|
||||
-B option, to focus a separate fuzzing session on a particular
|
||||
interesting input without rediscovering all the others. */
|
||||
|
||||
void write_bitmap(void) {
|
||||
|
||||
u8* fname;
|
||||
s32 fd;
|
||||
|
||||
if (!bitmap_changed) return;
|
||||
bitmap_changed = 0;
|
||||
|
||||
fname = alloc_printf("%s/fuzz_bitmap", out_dir);
|
||||
fd = open(fname, O_WRONLY | O_CREAT | O_TRUNC, 0600);
|
||||
|
||||
if (fd < 0) PFATAL("Unable to open '%s'", fname);
|
||||
|
||||
ck_write(fd, virgin_bits, MAP_SIZE, fname);
|
||||
|
||||
close(fd);
|
||||
ck_free(fname);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Read bitmap from file. This is for the -B option again. */
|
||||
|
||||
void read_bitmap(u8* fname) {
|
||||
|
||||
s32 fd = open(fname, O_RDONLY);
|
||||
|
||||
if (fd < 0) PFATAL("Unable to open '%s'", fname);
|
||||
|
||||
ck_read(fd, virgin_bits, MAP_SIZE, fname);
|
||||
|
||||
close(fd);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Check if the current execution path brings anything new to the table.
|
||||
Update virgin bits to reflect the finds. Returns 1 if the only change is
|
||||
the hit-count for a particular tuple; 2 if there are new tuples seen.
|
||||
Updates the map, so subsequent calls will always return 0.
|
||||
|
||||
This function is called after every exec() on a fairly large buffer, so
|
||||
it needs to be fast. We do this in 32-bit and 64-bit flavors. */
|
||||
|
||||
u8 has_new_bits(u8* virgin_map) {
|
||||
|
||||
#ifdef __x86_64__
|
||||
|
||||
u64* current = (u64*)trace_bits;
|
||||
u64* virgin = (u64*)virgin_map;
|
||||
|
||||
u32 i = (MAP_SIZE >> 3);
|
||||
|
||||
#else
|
||||
|
||||
u32* current = (u32*)trace_bits;
|
||||
u32* virgin = (u32*)virgin_map;
|
||||
|
||||
u32 i = (MAP_SIZE >> 2);
|
||||
|
||||
#endif /* ^__x86_64__ */
|
||||
|
||||
u8 ret = 0;
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
|
||||
that have not been already cleared from the virgin map - since this will
|
||||
almost always be the case. */
|
||||
|
||||
if (unlikely(*current) && unlikely(*current & *virgin)) {
|
||||
|
||||
if (likely(ret < 2)) {
|
||||
|
||||
u8* cur = (u8*)current;
|
||||
u8* vir = (u8*)virgin;
|
||||
|
||||
/* Looks like we have not found any new bytes yet; see if any non-zero
|
||||
bytes in current[] are pristine in virgin[]. */
|
||||
|
||||
#ifdef __x86_64__
|
||||
|
||||
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
|
||||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff) ||
|
||||
(cur[4] && vir[4] == 0xff) || (cur[5] && vir[5] == 0xff) ||
|
||||
(cur[6] && vir[6] == 0xff) || (cur[7] && vir[7] == 0xff)) ret = 2;
|
||||
else ret = 1;
|
||||
|
||||
#else
|
||||
|
||||
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
|
||||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff)) ret = 2;
|
||||
else ret = 1;
|
||||
|
||||
#endif /* ^__x86_64__ */
|
||||
|
||||
}
|
||||
|
||||
*virgin &= ~*current;
|
||||
|
||||
}
|
||||
|
||||
++current;
|
||||
++virgin;
|
||||
|
||||
}
|
||||
|
||||
if (ret && virgin_map == virgin_bits) bitmap_changed = 1;
|
||||
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Count the number of bits set in the provided bitmap. Used for the status
|
||||
screen several times every second, does not have to be fast. */
|
||||
|
||||
u32 count_bits(u8* mem) {
|
||||
|
||||
u32* ptr = (u32*)mem;
|
||||
u32 i = (MAP_SIZE >> 2);
|
||||
u32 ret = 0;
|
||||
|
||||
while (i--) {
|
||||
|
||||
u32 v = *(ptr++);
|
||||
|
||||
/* This gets called on the inverse, virgin bitmap; optimize for sparse
|
||||
data. */
|
||||
|
||||
if (v == 0xffffffff) {
|
||||
ret += 32;
|
||||
continue;
|
||||
}
|
||||
|
||||
v -= ((v >> 1) & 0x55555555);
|
||||
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
|
||||
ret += (((v + (v >> 4)) & 0xF0F0F0F) * 0x01010101) >> 24;
|
||||
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
|
||||
#define FF(_b) (0xff << ((_b) << 3))
|
||||
|
||||
/* Count the number of bytes set in the bitmap. Called fairly sporadically,
|
||||
mostly to update the status screen or calibrate and examine confirmed
|
||||
new paths. */
|
||||
|
||||
u32 count_bytes(u8* mem) {
|
||||
|
||||
u32* ptr = (u32*)mem;
|
||||
u32 i = (MAP_SIZE >> 2);
|
||||
u32 ret = 0;
|
||||
|
||||
while (i--) {
|
||||
|
||||
u32 v = *(ptr++);
|
||||
|
||||
if (!v) continue;
|
||||
if (v & FF(0)) ++ret;
|
||||
if (v & FF(1)) ++ret;
|
||||
if (v & FF(2)) ++ret;
|
||||
if (v & FF(3)) ++ret;
|
||||
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Count the number of non-255 bytes set in the bitmap. Used strictly for the
|
||||
status screen, several calls per second or so. */
|
||||
|
||||
u32 count_non_255_bytes(u8* mem) {
|
||||
|
||||
u32* ptr = (u32*)mem;
|
||||
u32 i = (MAP_SIZE >> 2);
|
||||
u32 ret = 0;
|
||||
|
||||
while (i--) {
|
||||
|
||||
u32 v = *(ptr++);
|
||||
|
||||
/* This is called on the virgin bitmap, so optimize for the most likely
|
||||
case. */
|
||||
|
||||
if (v == 0xffffffff) continue;
|
||||
if ((v & FF(0)) != FF(0)) ++ret;
|
||||
if ((v & FF(1)) != FF(1)) ++ret;
|
||||
if ((v & FF(2)) != FF(2)) ++ret;
|
||||
if ((v & FF(3)) != FF(3)) ++ret;
|
||||
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Destructively simplify trace by eliminating hit count information
|
||||
and replacing it with 0x80 or 0x01 depending on whether the tuple
|
||||
is hit or not. Called on every new crash or timeout, should be
|
||||
reasonably fast. */
|
||||
|
||||
const u8 simplify_lookup[256] = {
|
||||
|
||||
[0] = 1,
|
||||
[1 ... 255] = 128
|
||||
|
||||
};
|
||||
|
||||
#ifdef __x86_64__
|
||||
|
||||
void simplify_trace(u64* mem) {
|
||||
|
||||
u32 i = MAP_SIZE >> 3;
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for sparse bitmaps. */
|
||||
|
||||
if (unlikely(*mem)) {
|
||||
|
||||
u8* mem8 = (u8*)mem;
|
||||
|
||||
mem8[0] = simplify_lookup[mem8[0]];
|
||||
mem8[1] = simplify_lookup[mem8[1]];
|
||||
mem8[2] = simplify_lookup[mem8[2]];
|
||||
mem8[3] = simplify_lookup[mem8[3]];
|
||||
mem8[4] = simplify_lookup[mem8[4]];
|
||||
mem8[5] = simplify_lookup[mem8[5]];
|
||||
mem8[6] = simplify_lookup[mem8[6]];
|
||||
mem8[7] = simplify_lookup[mem8[7]];
|
||||
|
||||
} else *mem = 0x0101010101010101ULL;
|
||||
|
||||
++mem;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void simplify_trace(u32* mem) {
|
||||
|
||||
u32 i = MAP_SIZE >> 2;
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for sparse bitmaps. */
|
||||
|
||||
if (unlikely(*mem)) {
|
||||
|
||||
u8* mem8 = (u8*)mem;
|
||||
|
||||
mem8[0] = simplify_lookup[mem8[0]];
|
||||
mem8[1] = simplify_lookup[mem8[1]];
|
||||
mem8[2] = simplify_lookup[mem8[2]];
|
||||
mem8[3] = simplify_lookup[mem8[3]];
|
||||
|
||||
} else *mem = 0x01010101;
|
||||
|
||||
++mem;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif /* ^__x86_64__ */
|
||||
|
||||
|
||||
/* Destructively classify execution counts in a trace. This is used as a
|
||||
preprocessing step for any newly acquired traces. Called on every exec,
|
||||
must be fast. */
|
||||
|
||||
static const u8 count_class_lookup8[256] = {
|
||||
|
||||
[0] = 0,
|
||||
[1] = 1,
|
||||
[2] = 2,
|
||||
[3] = 4,
|
||||
[4 ... 7] = 8,
|
||||
[8 ... 15] = 16,
|
||||
[16 ... 31] = 32,
|
||||
[32 ... 127] = 64,
|
||||
[128 ... 255] = 128
|
||||
|
||||
};
|
||||
|
||||
static u16 count_class_lookup16[65536];
|
||||
|
||||
|
||||
void init_count_class16(void) {
|
||||
|
||||
u32 b1, b2;
|
||||
|
||||
for (b1 = 0; b1 < 256; b1++)
|
||||
for (b2 = 0; b2 < 256; b2++)
|
||||
count_class_lookup16[(b1 << 8) + b2] =
|
||||
(count_class_lookup8[b1] << 8) |
|
||||
count_class_lookup8[b2];
|
||||
|
||||
}
|
||||
|
||||
|
||||
#ifdef __x86_64__
|
||||
|
||||
void classify_counts(u64* mem) {
|
||||
|
||||
u32 i = MAP_SIZE >> 3;
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for sparse bitmaps. */
|
||||
|
||||
if (unlikely(*mem)) {
|
||||
|
||||
u16* mem16 = (u16*)mem;
|
||||
|
||||
mem16[0] = count_class_lookup16[mem16[0]];
|
||||
mem16[1] = count_class_lookup16[mem16[1]];
|
||||
mem16[2] = count_class_lookup16[mem16[2]];
|
||||
mem16[3] = count_class_lookup16[mem16[3]];
|
||||
|
||||
}
|
||||
|
||||
++mem;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void classify_counts(u32* mem) {
|
||||
|
||||
u32 i = MAP_SIZE >> 2;
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for sparse bitmaps. */
|
||||
|
||||
if (unlikely(*mem)) {
|
||||
|
||||
u16* mem16 = (u16*)mem;
|
||||
|
||||
mem16[0] = count_class_lookup16[mem16[0]];
|
||||
mem16[1] = count_class_lookup16[mem16[1]];
|
||||
|
||||
}
|
||||
|
||||
++mem;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif /* ^__x86_64__ */
|
||||
|
||||
|
||||
/* Compact trace bytes into a smaller bitmap. We effectively just drop the
|
||||
count information here. This is called only sporadically, for some
|
||||
new paths. */
|
||||
|
||||
void minimize_bits(u8* dst, u8* src) {
|
||||
|
||||
u32 i = 0;
|
||||
|
||||
while (i < MAP_SIZE) {
|
||||
|
||||
if (*(src++)) dst[i >> 3] |= 1 << (i & 7);
|
||||
++i;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
24
src/afl-fuzz-src/misc.c
Normal file
24
src/afl-fuzz-src/misc.c
Normal file
@ -0,0 +1,24 @@
|
||||
/*
|
||||
american fuzzy lop - fuzzer code
|
||||
--------------------------------
|
||||
|
||||
Written and maintained by Michal Zalewski <lcamtuf@google.com>
|
||||
|
||||
Forkserver design by Jann Horn <jannhorn@googlemail.com>
|
||||
|
||||
Copyright 2013, 2014, 2015, 2016, 2017 Google Inc. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at:
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
This is the real deal: the program takes an instrumented binary and
|
||||
attempts a variety of basic fuzzing tricks, paying close attention to
|
||||
how they affect the execution path.
|
||||
|
||||
*/
|
||||
|
||||
#include "afl-fuzz.h"
|
||||
|
286
src/afl-fuzz-src/queue.c
Normal file
286
src/afl-fuzz-src/queue.c
Normal file
@ -0,0 +1,286 @@
|
||||
/*
|
||||
american fuzzy lop - fuzzer code
|
||||
--------------------------------
|
||||
|
||||
Written and maintained by Michal Zalewski <lcamtuf@google.com>
|
||||
|
||||
Forkserver design by Jann Horn <jannhorn@googlemail.com>
|
||||
|
||||
Copyright 2013, 2014, 2015, 2016, 2017 Google Inc. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at:
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
This is the real deal: the program takes an instrumented binary and
|
||||
attempts a variety of basic fuzzing tricks, paying close attention to
|
||||
how they affect the execution path.
|
||||
|
||||
*/
|
||||
|
||||
#include "afl-fuzz.h"
|
||||
|
||||
/* Mark deterministic checks as done for a particular queue entry. We use the
|
||||
.state file to avoid repeating deterministic fuzzing when resuming aborted
|
||||
scans. */
|
||||
|
||||
void mark_as_det_done(struct queue_entry* q) {
|
||||
|
||||
u8* fn = strrchr(q->fname, '/');
|
||||
s32 fd;
|
||||
|
||||
fn = alloc_printf("%s/queue/.state/deterministic_done/%s", out_dir, fn + 1);
|
||||
|
||||
fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
||||
if (fd < 0) PFATAL("Unable to create '%s'", fn);
|
||||
close(fd);
|
||||
|
||||
ck_free(fn);
|
||||
|
||||
q->passed_det = 1;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Mark as variable. Create symlinks if possible to make it easier to examine
|
||||
the files. */
|
||||
|
||||
void mark_as_variable(struct queue_entry* q) {
|
||||
|
||||
u8 *fn = strrchr(q->fname, '/') + 1, *ldest;
|
||||
|
||||
ldest = alloc_printf("../../%s", fn);
|
||||
fn = alloc_printf("%s/queue/.state/variable_behavior/%s", out_dir, fn);
|
||||
|
||||
if (symlink(ldest, fn)) {
|
||||
|
||||
s32 fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
||||
if (fd < 0) PFATAL("Unable to create '%s'", fn);
|
||||
close(fd);
|
||||
|
||||
}
|
||||
|
||||
ck_free(ldest);
|
||||
ck_free(fn);
|
||||
|
||||
q->var_behavior = 1;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Mark / unmark as redundant (edge-only). This is not used for restoring state,
|
||||
but may be useful for post-processing datasets. */
|
||||
|
||||
void mark_as_redundant(struct queue_entry* q, u8 state) {
|
||||
|
||||
u8* fn;
|
||||
|
||||
if (state == q->fs_redundant) return;
|
||||
|
||||
q->fs_redundant = state;
|
||||
|
||||
fn = strrchr(q->fname, '/');
|
||||
fn = alloc_printf("%s/queue/.state/redundant_edges/%s", out_dir, fn + 1);
|
||||
|
||||
if (state) {
|
||||
|
||||
s32 fd;
|
||||
|
||||
fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
||||
if (fd < 0) PFATAL("Unable to create '%s'", fn);
|
||||
close(fd);
|
||||
|
||||
} else {
|
||||
|
||||
if (unlink(fn)) PFATAL("Unable to remove '%s'", fn);
|
||||
|
||||
}
|
||||
|
||||
ck_free(fn);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Append new test case to the queue. */
|
||||
|
||||
void add_to_queue(u8* fname, u32 len, u8 passed_det) {
|
||||
|
||||
struct queue_entry* q = ck_alloc(sizeof(struct queue_entry));
|
||||
|
||||
q->fname = fname;
|
||||
q->len = len;
|
||||
q->depth = cur_depth + 1;
|
||||
q->passed_det = passed_det;
|
||||
q->n_fuzz = 1;
|
||||
|
||||
if (q->depth > max_depth) max_depth = q->depth;
|
||||
|
||||
if (queue_top) {
|
||||
|
||||
queue_top->next = q;
|
||||
queue_top = q;
|
||||
|
||||
} else q_prev100 = queue = queue_top = q;
|
||||
|
||||
++queued_paths;
|
||||
++pending_not_fuzzed;
|
||||
|
||||
cycles_wo_finds = 0;
|
||||
|
||||
if (!(queued_paths % 100)) {
|
||||
|
||||
q_prev100->next_100 = q;
|
||||
q_prev100 = q;
|
||||
|
||||
}
|
||||
|
||||
last_path_time = get_cur_time();
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Destroy the entire queue. */
|
||||
|
||||
void destroy_queue(void) {
|
||||
|
||||
struct queue_entry *q = queue, *n;
|
||||
|
||||
while (q) {
|
||||
|
||||
n = q->next;
|
||||
ck_free(q->fname);
|
||||
ck_free(q->trace_mini);
|
||||
ck_free(q);
|
||||
q = n;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* When we bump into a new path, we call this to see if the path appears
|
||||
more "favorable" than any of the existing ones. The purpose of the
|
||||
"favorables" is to have a minimal set of paths that trigger all the bits
|
||||
seen in the bitmap so far, and focus on fuzzing them at the expense of
|
||||
the rest.
|
||||
|
||||
The first step of the process is to maintain a list of top_rated[] entries
|
||||
for every byte in the bitmap. We win that slot if there is no previous
|
||||
contender, or if the contender has a more favorable speed x size factor. */
|
||||
|
||||
|
||||
void update_bitmap_score(struct queue_entry* q) {
|
||||
|
||||
u32 i;
|
||||
u64 fav_factor = q->exec_us * q->len;
|
||||
u64 fuzz_p2 = next_p2 (q->n_fuzz);
|
||||
|
||||
/* For every byte set in trace_bits[], see if there is a previous winner,
|
||||
and how it compares to us. */
|
||||
|
||||
for (i = 0; i < MAP_SIZE; ++i)
|
||||
|
||||
if (trace_bits[i]) {
|
||||
|
||||
if (top_rated[i]) {
|
||||
|
||||
/* Faster-executing or smaller test cases are favored. */
|
||||
u64 top_rated_fuzz_p2 = next_p2 (top_rated[i]->n_fuzz);
|
||||
u64 top_rated_fav_factor = top_rated[i]->exec_us * top_rated[i]->len;
|
||||
|
||||
if (fuzz_p2 > top_rated_fuzz_p2) {
|
||||
continue;
|
||||
} else if (fuzz_p2 == top_rated_fuzz_p2) {
|
||||
if (fav_factor > top_rated_fav_factor)
|
||||
continue;
|
||||
}
|
||||
|
||||
if (fav_factor > top_rated[i]->exec_us * top_rated[i]->len) continue;
|
||||
|
||||
/* Looks like we're going to win. Decrease ref count for the
|
||||
previous winner, discard its trace_bits[] if necessary. */
|
||||
|
||||
if (!--top_rated[i]->tc_ref) {
|
||||
ck_free(top_rated[i]->trace_mini);
|
||||
top_rated[i]->trace_mini = 0;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Insert ourselves as the new winner. */
|
||||
|
||||
top_rated[i] = q;
|
||||
++q->tc_ref;
|
||||
|
||||
if (!q->trace_mini) {
|
||||
q->trace_mini = ck_alloc(MAP_SIZE >> 3);
|
||||
minimize_bits(q->trace_mini, trace_bits);
|
||||
}
|
||||
|
||||
score_changed = 1;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* The second part of the mechanism discussed above is a routine that
|
||||
goes over top_rated[] entries, and then sequentially grabs winners for
|
||||
previously-unseen bytes (temp_v) and marks them as favored, at least
|
||||
until the next run. The favored entries are given more air time during
|
||||
all fuzzing steps. */
|
||||
|
||||
void cull_queue(void) {
|
||||
|
||||
struct queue_entry* q;
|
||||
static u8 temp_v[MAP_SIZE >> 3];
|
||||
u32 i;
|
||||
|
||||
if (dumb_mode || !score_changed) return;
|
||||
|
||||
score_changed = 0;
|
||||
|
||||
memset(temp_v, 255, MAP_SIZE >> 3);
|
||||
|
||||
queued_favored = 0;
|
||||
pending_favored = 0;
|
||||
|
||||
q = queue;
|
||||
|
||||
while (q) {
|
||||
q->favored = 0;
|
||||
q = q->next;
|
||||
}
|
||||
|
||||
/* Let's see if anything in the bitmap isn't captured in temp_v.
|
||||
If yes, and if it has a top_rated[] contender, let's use it. */
|
||||
|
||||
for (i = 0; i < MAP_SIZE; ++i)
|
||||
if (top_rated[i] && (temp_v[i >> 3] & (1 << (i & 7)))) {
|
||||
|
||||
u32 j = MAP_SIZE >> 3;
|
||||
|
||||
/* Remove all bits belonging to the current entry from temp_v. */
|
||||
|
||||
while (j--)
|
||||
if (top_rated[i]->trace_mini[j])
|
||||
temp_v[j] &= ~top_rated[i]->trace_mini[j];
|
||||
|
||||
top_rated[i]->favored = 1;
|
||||
++queued_favored;
|
||||
|
||||
if (top_rated[i]->fuzz_level == 0 || !top_rated[i]->was_fuzzed) ++pending_favored;
|
||||
|
||||
}
|
||||
|
||||
q = queue;
|
||||
|
||||
while (q) {
|
||||
mark_as_redundant(q, !q->favored);
|
||||
q = q->next;
|
||||
}
|
||||
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user