merge romu and skim

This commit is contained in:
van Hauser
2020-12-18 09:33:52 +01:00
parent d07b0169cb
commit 0011f2047b
4 changed files with 334 additions and 104 deletions

View File

@ -134,6 +134,12 @@
// Little helper to access the ptr to afl->##name_buf - for use in afl_realloc.
#define AFL_BUF_PARAM(name) ((void **)&afl->name##_buf)
#ifdef WORD_SIZE_64
#define AFL_RAND_RETURN u64
#else
#define AFL_RAND_RETURN u32
#endif
extern s8 interesting_8[INTERESTING_8_LEN];
extern s16 interesting_16[INTERESTING_8_LEN + INTERESTING_16_LEN];
extern s32
@ -580,7 +586,7 @@ typedef struct afl_state {
u32 rand_cnt; /* Random number counter */
u64 rand_seed[4];
u64 rand_seed[3];
s64 init_seed;
u64 total_cal_us, /* Total calibration time (us) */
@ -1015,8 +1021,8 @@ u32 count_bits(afl_state_t *, u8 *);
u32 count_bytes(afl_state_t *, u8 *);
u32 count_non_255_bytes(afl_state_t *, u8 *);
void simplify_trace(afl_state_t *, u8 *);
void classify_counts(afl_forkserver_t *);
void init_count_class16(void);
void classify_counts(afl_forkserver_t *fsrv);
void minimize_bits(afl_state_t *, u8 *, u8 *);
#ifndef SIMPLE_FILES
u8 *describe_op(afl_state_t *, u8, size_t);
@ -1106,8 +1112,7 @@ u8 common_fuzz_cmplog_stuff(afl_state_t *afl, u8 *out_buf, u32 len);
u8 input_to_state_stage(afl_state_t *afl, u8 *orig_buf, u8 *buf, u32 len,
u64 exec_cksum);
/* xoshiro256** */
uint64_t rand_next(afl_state_t *afl);
AFL_RAND_RETURN rand_next(afl_state_t *afl);
/* probability between 0.0 and 1.0 */
double rand_next_percent(afl_state_t *afl);

109
include/coverage-32.h Normal file
View File

@ -0,0 +1,109 @@
#include "config.h"
#include "types.h"
inline u32 classify_word(u32 word) {
u16 mem16[2];
memcpy(mem16, &word, sizeof(mem16));
mem16[0] = count_class_lookup16[mem16[0]];
mem16[1] = count_class_lookup16[mem16[1]];
memcpy(&word, mem16, sizeof(mem16));
return word;
}
void simplify_trace(afl_state_t *afl, u8 *bytes) {
u32 *mem = (u32 *)fsrv->trace_bits;
u32 i = (fsrv->map_size >> 2);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) {
u8 *mem8 = (u8 *)mem;
mem8[0] = simplify_lookup[mem8[0]];
mem8[1] = simplify_lookup[mem8[1]];
mem8[2] = simplify_lookup[mem8[2]];
mem8[3] = simplify_lookup[mem8[3]];
} else
*mem = 0x01010101;
mem++;
}
}
inline void classify_counts(u8 *bytes) {
u64 *mem = (u64 *)bytes;
u32 i = MAP_SIZE >> 2;
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) { *mem = classify_word(*mem); }
mem++;
}
}
/* Updates the virgin bits, then reflects whether a new count or a new tuple is
* seen in ret. */
inline void discover_word(u8 *ret, u32 *current, u32 *virgin) {
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
that have not been already cleared from the virgin map - since this will
almost always be the case. */
if (*current & *virgin) {
if (likely(*ret < 2)) {
u8 *cur = (u8 *)current;
u8 *vir = (u8 *)virgin;
/* Looks like we have not found any new bytes yet; see if any non-zero
bytes in current[] are pristine in virgin[]. */
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff))
*ret = 2;
else
*ret = 1;
}
*virgin &= ~*current;
}
}
#define PACK_SIZE 16
inline u32 skim(const u32 *virgin, const u32 *current, const u32 *current_end) {
for (; current != current_end; virgin += 4, current += 4) {
if (current[0] && classify_word(current[0]) & virgin[0]) return 1;
if (current[1] && classify_word(current[1]) & virgin[1]) return 1;
if (current[2] && classify_word(current[2]) & virgin[2]) return 1;
if (current[3] && classify_word(current[3]) & virgin[3]) return 1;
}
return 0;
}

186
include/coverage-64.h Normal file
View File

@ -0,0 +1,186 @@
#include "config.h"
#include "types.h"
#if (defined(__AVX512F__) && defined(__AVX512DQ__)) || defined(__AVX2__)
#include <immintrin.h>
#endif
inline u64 classify_word(u64 word) {
u16 mem16[4];
memcpy(mem16, &word, sizeof(mem16));
mem16[0] = count_class_lookup16[mem16[0]];
mem16[1] = count_class_lookup16[mem16[1]];
mem16[2] = count_class_lookup16[mem16[2]];
mem16[3] = count_class_lookup16[mem16[3]];
memcpy(&word, mem16, sizeof(mem16));
return word;
}
void simplify_trace(afl_state_t *afl, u8 *bytes) {
u64 *mem = (u64 *)bytes;
u32 i = (afl->fsrv.map_size >> 3);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) {
u8 *mem8 = (u8 *)mem;
mem8[0] = simplify_lookup[mem8[0]];
mem8[1] = simplify_lookup[mem8[1]];
mem8[2] = simplify_lookup[mem8[2]];
mem8[3] = simplify_lookup[mem8[3]];
mem8[4] = simplify_lookup[mem8[4]];
mem8[5] = simplify_lookup[mem8[5]];
mem8[6] = simplify_lookup[mem8[6]];
mem8[7] = simplify_lookup[mem8[7]];
} else
*mem = 0x0101010101010101ULL;
mem++;
}
}
inline void classify_counts(afl_forkserver_t *fsrv) {
u64 *mem = (u64 *)fsrv->trace_bits;
u32 i = (fsrv->map_size >> 3);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) { *mem = classify_word(*mem); }
mem++;
}
}
/* Updates the virgin bits, then reflects whether a new count or a new tuple is
* seen in ret. */
inline void discover_word(u8 *ret, u64 *current, u64 *virgin) {
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
that have not been already cleared from the virgin map - since this will
almost always be the case. */
if (*current & *virgin) {
if (likely(*ret < 2)) {
u8 *cur = (u8 *)current;
u8 *vir = (u8 *)virgin;
/* Looks like we have not found any new bytes yet; see if any non-zero
bytes in current[] are pristine in virgin[]. */
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff) ||
(cur[4] && vir[4] == 0xff) || (cur[5] && vir[5] == 0xff) ||
(cur[6] && vir[6] == 0xff) || (cur[7] && vir[7] == 0xff))
*ret = 2;
else
*ret = 1;
}
*virgin &= ~*current;
}
}
#if defined(__AVX512F__) && defined(__AVX512DQ__)
#define PACK_SIZE 64
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
for (; current != current_end; virgin += 8, current += 8) {
__m512i value = *(__m512i *)current;
__mmask8 mask = _mm512_testn_epi64_mask(value, value);
/* All bytes are zero. */
if (mask == 0xff) continue;
/* Look for nonzero bytes and check for new bits. */
#define UNROLL(x) \
if (!(mask & (1 << x)) && classify_word(current[x]) & virgin[x]) return 1
UNROLL(0);
UNROLL(1);
UNROLL(2);
UNROLL(3);
UNROLL(4);
UNROLL(5);
UNROLL(6);
UNROLL(7);
#undef UNROLL
}
return 0;
}
#endif
#if !defined(PACK_SIZE) && defined(__AVX2__)
#define PACK_SIZE 32
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
__m256i zeroes = _mm256_setzero_si256();
for (; current != current_end; virgin += 4, current += 4) {
__m256i value = *(__m256i *)current;
__m256i cmp = _mm256_cmpeq_epi64(value, zeroes);
u32 mask = _mm256_movemask_epi8(cmp);
/* All bytes are zero. */
if (mask == (u32)-1) continue;
/* Look for nonzero bytes and check for new bits. */
if (!(mask & 0xff) && classify_word(current[0]) & virgin[0]) return 1;
if (!(mask & 0xff00) && classify_word(current[1]) & virgin[1]) return 1;
if (!(mask & 0xff0000) && classify_word(current[2]) & virgin[2]) return 1;
if (!(mask & 0xff000000) && classify_word(current[3]) & virgin[3]) return 1;
}
return 0;
}
#endif
#if !defined(PACK_SIZE)
#define PACK_SIZE 32
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
for (; current != current_end; virgin += 4, current += 4) {
if (current[0] && classify_word(current[0]) & virgin[0]) return 1;
if (current[1] && classify_word(current[1]) & virgin[1]) return 1;
if (current[2] && classify_word(current[2]) & virgin[2]) return 1;
if (current[3] && classify_word(current[3]) & virgin[3]) return 1;
}
return 0;
}
#endif

View File

@ -27,46 +27,50 @@
#include "xxhash.h"
#undef XXH_INLINE_ALL
/* we use xoshiro256** instead of rand/random because it is 10x faster and has
better randomness properties. */
static inline uint64_t rotl(const uint64_t x, int k) {
return (x << k) | (x >> (64 - k));
}
void rand_set_seed(afl_state_t *afl, s64 init_seed) {
afl->init_seed = init_seed;
afl->rand_seed[0] =
hash64((u8 *)&afl->init_seed, sizeof(afl->init_seed), HASH_CONST);
afl->rand_seed[1] = afl->rand_seed[0] ^ 0x1234567890abcdef;
afl->rand_seed[2] = afl->rand_seed[0] & 0x0123456789abcdef;
afl->rand_seed[3] = afl->rand_seed[0] | 0x01abcde43f567908;
afl->rand_seed[2] = (afl->rand_seed[0] & 0x1234567890abcdef) ^
(afl->rand_seed[1] | 0xfedcba9876543210);
}
inline uint64_t rand_next(afl_state_t *afl) {
#define ROTL(d, lrot) ((d << (lrot)) | (d >> (8 * sizeof(d) - (lrot))))
const uint64_t result =
rotl(afl->rand_seed[0] + afl->rand_seed[3], 23) + afl->rand_seed[0];
#ifdef WORD_SIZE_64
// romuDuoJr
inline AFL_RAND_RETURN rand_next(afl_state_t *afl) {
const uint64_t t = afl->rand_seed[1] << 17;
afl->rand_seed[2] ^= afl->rand_seed[0];
afl->rand_seed[3] ^= afl->rand_seed[1];
afl->rand_seed[1] ^= afl->rand_seed[2];
afl->rand_seed[0] ^= afl->rand_seed[3];
afl->rand_seed[2] ^= t;
afl->rand_seed[3] = rotl(afl->rand_seed[3], 45);
return result;
AFL_RAND_RETURN xp = afl->rand_seed[0];
afl->rand_seed[0] = 15241094284759029579u * afl->rand_seed[1];
afl->rand_seed[1] = afl->rand_seed[1] - xp;
afl->rand_seed[1] = ROTL(afl->rand_seed[1], 27);
return xp;
}
#else
// RomuTrio32
inline AFL_RAND_RETURN rand_next(afl_state_t *afl) {
AFL_RAND_RETURN xp = afl->rand_seed[0], yp = afl->rand_seed[1],
zp = afl->rand_seed[2];
afl->rand_seed[0] = 3323815723u * zp;
afl->rand_seed[1] = yp - xp;
afl->rand_seed[1] = ROTL(afl->rand_seed[1], 6);
afl->rand_seed[2] = zp - yp;
afl->rand_seed[2] = ROTL(afl->rand_seed[2], 22);
return xp;
}
#endif
#undef ROTL
/* returns a double between 0.000000000 and 1.000000000 */
inline double rand_next_percent(afl_state_t *afl) {
@ -75,80 +79,6 @@ inline double rand_next_percent(afl_state_t *afl) {
}
/* This is the jump function for the generator. It is equivalent
to 2^128 calls to rand_next(); it can be used to generate 2^128
non-overlapping subsequences for parallel computations. */
void jump(afl_state_t *afl) {
static const uint64_t JUMP[] = {0x180ec6d33cfd0aba, 0xd5a61266f0c9392c,
0xa9582618e03fc9aa, 0x39abdc4529b1661c};
size_t i, b;
uint64_t s0 = 0;
uint64_t s1 = 0;
uint64_t s2 = 0;
uint64_t s3 = 0;
for (i = 0; i < (sizeof(JUMP) / sizeof(*JUMP)); i++)
for (b = 0; b < 64; b++) {
if (JUMP[i] & UINT64_C(1) << b) {
s0 ^= afl->rand_seed[0];
s1 ^= afl->rand_seed[1];
s2 ^= afl->rand_seed[2];
s3 ^= afl->rand_seed[3];
}
rand_next(afl);
}
afl->rand_seed[0] = s0;
afl->rand_seed[1] = s1;
afl->rand_seed[2] = s2;
afl->rand_seed[3] = s3;
}
/* This is the long-jump function for the generator. It is equivalent to
2^192 calls to rand_next(); it can be used to generate 2^64 starting points,
from each of which jump() will generate 2^64 non-overlapping
subsequences for parallel distributed computations. */
void long_jump(afl_state_t *afl) {
static const uint64_t LONG_JUMP[] = {0x76e15d3efefdcbbf, 0xc5004e441c522fb3,
0x77710069854ee241, 0x39109bb02acbe635};
size_t i, b;
uint64_t s0 = 0;
uint64_t s1 = 0;
uint64_t s2 = 0;
uint64_t s3 = 0;
for (i = 0; i < (sizeof(LONG_JUMP) / sizeof(*LONG_JUMP)); i++)
for (b = 0; b < 64; b++) {
if (LONG_JUMP[i] & UINT64_C(1) << b) {
s0 ^= afl->rand_seed[0];
s1 ^= afl->rand_seed[1];
s2 ^= afl->rand_seed[2];
s3 ^= afl->rand_seed[3];
}
rand_next(afl);
}
afl->rand_seed[0] = s0;
afl->rand_seed[1] = s1;
afl->rand_seed[2] = s2;
afl->rand_seed[3] = s3;
}
/* we switch from afl's murmur implementation to xxh3 as it is 30% faster -
and get 64 bit hashes instead of just 32 bit. Less collisions! :-) */