mirror of
https://github.com/AFLplusplus/AFLplusplus.git
synced 2025-06-13 18:48:08 +00:00
merge romu and skim
This commit is contained in:
@ -134,6 +134,12 @@
|
||||
// Little helper to access the ptr to afl->##name_buf - for use in afl_realloc.
|
||||
#define AFL_BUF_PARAM(name) ((void **)&afl->name##_buf)
|
||||
|
||||
#ifdef WORD_SIZE_64
|
||||
#define AFL_RAND_RETURN u64
|
||||
#else
|
||||
#define AFL_RAND_RETURN u32
|
||||
#endif
|
||||
|
||||
extern s8 interesting_8[INTERESTING_8_LEN];
|
||||
extern s16 interesting_16[INTERESTING_8_LEN + INTERESTING_16_LEN];
|
||||
extern s32
|
||||
@ -580,7 +586,7 @@ typedef struct afl_state {
|
||||
|
||||
u32 rand_cnt; /* Random number counter */
|
||||
|
||||
u64 rand_seed[4];
|
||||
u64 rand_seed[3];
|
||||
s64 init_seed;
|
||||
|
||||
u64 total_cal_us, /* Total calibration time (us) */
|
||||
@ -1015,8 +1021,8 @@ u32 count_bits(afl_state_t *, u8 *);
|
||||
u32 count_bytes(afl_state_t *, u8 *);
|
||||
u32 count_non_255_bytes(afl_state_t *, u8 *);
|
||||
void simplify_trace(afl_state_t *, u8 *);
|
||||
void classify_counts(afl_forkserver_t *);
|
||||
void init_count_class16(void);
|
||||
void classify_counts(afl_forkserver_t *fsrv);
|
||||
void minimize_bits(afl_state_t *, u8 *, u8 *);
|
||||
#ifndef SIMPLE_FILES
|
||||
u8 *describe_op(afl_state_t *, u8, size_t);
|
||||
@ -1106,8 +1112,7 @@ u8 common_fuzz_cmplog_stuff(afl_state_t *afl, u8 *out_buf, u32 len);
|
||||
u8 input_to_state_stage(afl_state_t *afl, u8 *orig_buf, u8 *buf, u32 len,
|
||||
u64 exec_cksum);
|
||||
|
||||
/* xoshiro256** */
|
||||
uint64_t rand_next(afl_state_t *afl);
|
||||
AFL_RAND_RETURN rand_next(afl_state_t *afl);
|
||||
|
||||
/* probability between 0.0 and 1.0 */
|
||||
double rand_next_percent(afl_state_t *afl);
|
||||
|
109
include/coverage-32.h
Normal file
109
include/coverage-32.h
Normal file
@ -0,0 +1,109 @@
|
||||
#include "config.h"
|
||||
#include "types.h"
|
||||
|
||||
inline u32 classify_word(u32 word) {
|
||||
|
||||
u16 mem16[2];
|
||||
memcpy(mem16, &word, sizeof(mem16));
|
||||
|
||||
mem16[0] = count_class_lookup16[mem16[0]];
|
||||
mem16[1] = count_class_lookup16[mem16[1]];
|
||||
|
||||
memcpy(&word, mem16, sizeof(mem16));
|
||||
return word;
|
||||
|
||||
}
|
||||
|
||||
void simplify_trace(afl_state_t *afl, u8 *bytes) {
|
||||
|
||||
u32 *mem = (u32 *)fsrv->trace_bits;
|
||||
u32 i = (fsrv->map_size >> 2);
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for sparse bitmaps. */
|
||||
|
||||
if (unlikely(*mem)) {
|
||||
|
||||
u8 *mem8 = (u8 *)mem;
|
||||
|
||||
mem8[0] = simplify_lookup[mem8[0]];
|
||||
mem8[1] = simplify_lookup[mem8[1]];
|
||||
mem8[2] = simplify_lookup[mem8[2]];
|
||||
mem8[3] = simplify_lookup[mem8[3]];
|
||||
|
||||
} else
|
||||
|
||||
*mem = 0x01010101;
|
||||
|
||||
mem++;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
inline void classify_counts(u8 *bytes) {
|
||||
|
||||
u64 *mem = (u64 *)bytes;
|
||||
u32 i = MAP_SIZE >> 2;
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for sparse bitmaps. */
|
||||
|
||||
if (unlikely(*mem)) { *mem = classify_word(*mem); }
|
||||
|
||||
mem++;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Updates the virgin bits, then reflects whether a new count or a new tuple is
|
||||
* seen in ret. */
|
||||
inline void discover_word(u8 *ret, u32 *current, u32 *virgin) {
|
||||
|
||||
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
|
||||
that have not been already cleared from the virgin map - since this will
|
||||
almost always be the case. */
|
||||
|
||||
if (*current & *virgin) {
|
||||
|
||||
if (likely(*ret < 2)) {
|
||||
|
||||
u8 *cur = (u8 *)current;
|
||||
u8 *vir = (u8 *)virgin;
|
||||
|
||||
/* Looks like we have not found any new bytes yet; see if any non-zero
|
||||
bytes in current[] are pristine in virgin[]. */
|
||||
|
||||
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
|
||||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff))
|
||||
*ret = 2;
|
||||
else
|
||||
*ret = 1;
|
||||
|
||||
}
|
||||
|
||||
*virgin &= ~*current;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#define PACK_SIZE 16
|
||||
inline u32 skim(const u32 *virgin, const u32 *current, const u32 *current_end) {
|
||||
|
||||
for (; current != current_end; virgin += 4, current += 4) {
|
||||
|
||||
if (current[0] && classify_word(current[0]) & virgin[0]) return 1;
|
||||
if (current[1] && classify_word(current[1]) & virgin[1]) return 1;
|
||||
if (current[2] && classify_word(current[2]) & virgin[2]) return 1;
|
||||
if (current[3] && classify_word(current[3]) & virgin[3]) return 1;
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
186
include/coverage-64.h
Normal file
186
include/coverage-64.h
Normal file
@ -0,0 +1,186 @@
|
||||
#include "config.h"
|
||||
#include "types.h"
|
||||
|
||||
#if (defined(__AVX512F__) && defined(__AVX512DQ__)) || defined(__AVX2__)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
|
||||
inline u64 classify_word(u64 word) {
|
||||
|
||||
u16 mem16[4];
|
||||
memcpy(mem16, &word, sizeof(mem16));
|
||||
|
||||
mem16[0] = count_class_lookup16[mem16[0]];
|
||||
mem16[1] = count_class_lookup16[mem16[1]];
|
||||
mem16[2] = count_class_lookup16[mem16[2]];
|
||||
mem16[3] = count_class_lookup16[mem16[3]];
|
||||
|
||||
memcpy(&word, mem16, sizeof(mem16));
|
||||
return word;
|
||||
|
||||
}
|
||||
|
||||
void simplify_trace(afl_state_t *afl, u8 *bytes) {
|
||||
|
||||
u64 *mem = (u64 *)bytes;
|
||||
u32 i = (afl->fsrv.map_size >> 3);
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for sparse bitmaps. */
|
||||
|
||||
if (unlikely(*mem)) {
|
||||
|
||||
u8 *mem8 = (u8 *)mem;
|
||||
|
||||
mem8[0] = simplify_lookup[mem8[0]];
|
||||
mem8[1] = simplify_lookup[mem8[1]];
|
||||
mem8[2] = simplify_lookup[mem8[2]];
|
||||
mem8[3] = simplify_lookup[mem8[3]];
|
||||
mem8[4] = simplify_lookup[mem8[4]];
|
||||
mem8[5] = simplify_lookup[mem8[5]];
|
||||
mem8[6] = simplify_lookup[mem8[6]];
|
||||
mem8[7] = simplify_lookup[mem8[7]];
|
||||
|
||||
} else
|
||||
|
||||
*mem = 0x0101010101010101ULL;
|
||||
|
||||
mem++;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
inline void classify_counts(afl_forkserver_t *fsrv) {
|
||||
|
||||
u64 *mem = (u64 *)fsrv->trace_bits;
|
||||
u32 i = (fsrv->map_size >> 3);
|
||||
|
||||
while (i--) {
|
||||
|
||||
/* Optimize for sparse bitmaps. */
|
||||
|
||||
if (unlikely(*mem)) { *mem = classify_word(*mem); }
|
||||
|
||||
mem++;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Updates the virgin bits, then reflects whether a new count or a new tuple is
|
||||
* seen in ret. */
|
||||
inline void discover_word(u8 *ret, u64 *current, u64 *virgin) {
|
||||
|
||||
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
|
||||
that have not been already cleared from the virgin map - since this will
|
||||
almost always be the case. */
|
||||
|
||||
if (*current & *virgin) {
|
||||
|
||||
if (likely(*ret < 2)) {
|
||||
|
||||
u8 *cur = (u8 *)current;
|
||||
u8 *vir = (u8 *)virgin;
|
||||
|
||||
/* Looks like we have not found any new bytes yet; see if any non-zero
|
||||
bytes in current[] are pristine in virgin[]. */
|
||||
|
||||
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
|
||||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff) ||
|
||||
(cur[4] && vir[4] == 0xff) || (cur[5] && vir[5] == 0xff) ||
|
||||
(cur[6] && vir[6] == 0xff) || (cur[7] && vir[7] == 0xff))
|
||||
*ret = 2;
|
||||
else
|
||||
*ret = 1;
|
||||
|
||||
}
|
||||
|
||||
*virgin &= ~*current;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#if defined(__AVX512F__) && defined(__AVX512DQ__)
|
||||
#define PACK_SIZE 64
|
||||
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
|
||||
|
||||
for (; current != current_end; virgin += 8, current += 8) {
|
||||
|
||||
__m512i value = *(__m512i *)current;
|
||||
__mmask8 mask = _mm512_testn_epi64_mask(value, value);
|
||||
|
||||
/* All bytes are zero. */
|
||||
if (mask == 0xff) continue;
|
||||
|
||||
/* Look for nonzero bytes and check for new bits. */
|
||||
#define UNROLL(x) \
|
||||
if (!(mask & (1 << x)) && classify_word(current[x]) & virgin[x]) return 1
|
||||
UNROLL(0);
|
||||
UNROLL(1);
|
||||
UNROLL(2);
|
||||
UNROLL(3);
|
||||
UNROLL(4);
|
||||
UNROLL(5);
|
||||
UNROLL(6);
|
||||
UNROLL(7);
|
||||
#undef UNROLL
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined(PACK_SIZE) && defined(__AVX2__)
|
||||
#define PACK_SIZE 32
|
||||
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
|
||||
|
||||
__m256i zeroes = _mm256_setzero_si256();
|
||||
|
||||
for (; current != current_end; virgin += 4, current += 4) {
|
||||
|
||||
__m256i value = *(__m256i *)current;
|
||||
__m256i cmp = _mm256_cmpeq_epi64(value, zeroes);
|
||||
u32 mask = _mm256_movemask_epi8(cmp);
|
||||
|
||||
/* All bytes are zero. */
|
||||
if (mask == (u32)-1) continue;
|
||||
|
||||
/* Look for nonzero bytes and check for new bits. */
|
||||
if (!(mask & 0xff) && classify_word(current[0]) & virgin[0]) return 1;
|
||||
if (!(mask & 0xff00) && classify_word(current[1]) & virgin[1]) return 1;
|
||||
if (!(mask & 0xff0000) && classify_word(current[2]) & virgin[2]) return 1;
|
||||
if (!(mask & 0xff000000) && classify_word(current[3]) & virgin[3]) return 1;
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined(PACK_SIZE)
|
||||
#define PACK_SIZE 32
|
||||
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
|
||||
|
||||
for (; current != current_end; virgin += 4, current += 4) {
|
||||
|
||||
if (current[0] && classify_word(current[0]) & virgin[0]) return 1;
|
||||
if (current[1] && classify_word(current[1]) & virgin[1]) return 1;
|
||||
if (current[2] && classify_word(current[2]) & virgin[2]) return 1;
|
||||
if (current[3] && classify_word(current[3]) & virgin[3]) return 1;
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -27,46 +27,50 @@
|
||||
#include "xxhash.h"
|
||||
#undef XXH_INLINE_ALL
|
||||
|
||||
/* we use xoshiro256** instead of rand/random because it is 10x faster and has
|
||||
better randomness properties. */
|
||||
|
||||
static inline uint64_t rotl(const uint64_t x, int k) {
|
||||
|
||||
return (x << k) | (x >> (64 - k));
|
||||
|
||||
}
|
||||
|
||||
void rand_set_seed(afl_state_t *afl, s64 init_seed) {
|
||||
|
||||
afl->init_seed = init_seed;
|
||||
afl->rand_seed[0] =
|
||||
hash64((u8 *)&afl->init_seed, sizeof(afl->init_seed), HASH_CONST);
|
||||
afl->rand_seed[1] = afl->rand_seed[0] ^ 0x1234567890abcdef;
|
||||
afl->rand_seed[2] = afl->rand_seed[0] & 0x0123456789abcdef;
|
||||
afl->rand_seed[3] = afl->rand_seed[0] | 0x01abcde43f567908;
|
||||
afl->rand_seed[2] = (afl->rand_seed[0] & 0x1234567890abcdef) ^
|
||||
(afl->rand_seed[1] | 0xfedcba9876543210);
|
||||
|
||||
}
|
||||
|
||||
inline uint64_t rand_next(afl_state_t *afl) {
|
||||
#define ROTL(d, lrot) ((d << (lrot)) | (d >> (8 * sizeof(d) - (lrot))))
|
||||
|
||||
const uint64_t result =
|
||||
rotl(afl->rand_seed[0] + afl->rand_seed[3], 23) + afl->rand_seed[0];
|
||||
#ifdef WORD_SIZE_64
|
||||
// romuDuoJr
|
||||
inline AFL_RAND_RETURN rand_next(afl_state_t *afl) {
|
||||
|
||||
const uint64_t t = afl->rand_seed[1] << 17;
|
||||
|
||||
afl->rand_seed[2] ^= afl->rand_seed[0];
|
||||
afl->rand_seed[3] ^= afl->rand_seed[1];
|
||||
afl->rand_seed[1] ^= afl->rand_seed[2];
|
||||
afl->rand_seed[0] ^= afl->rand_seed[3];
|
||||
|
||||
afl->rand_seed[2] ^= t;
|
||||
|
||||
afl->rand_seed[3] = rotl(afl->rand_seed[3], 45);
|
||||
|
||||
return result;
|
||||
AFL_RAND_RETURN xp = afl->rand_seed[0];
|
||||
afl->rand_seed[0] = 15241094284759029579u * afl->rand_seed[1];
|
||||
afl->rand_seed[1] = afl->rand_seed[1] - xp;
|
||||
afl->rand_seed[1] = ROTL(afl->rand_seed[1], 27);
|
||||
return xp;
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
// RomuTrio32
|
||||
inline AFL_RAND_RETURN rand_next(afl_state_t *afl) {
|
||||
|
||||
AFL_RAND_RETURN xp = afl->rand_seed[0], yp = afl->rand_seed[1],
|
||||
zp = afl->rand_seed[2];
|
||||
afl->rand_seed[0] = 3323815723u * zp;
|
||||
afl->rand_seed[1] = yp - xp;
|
||||
afl->rand_seed[1] = ROTL(afl->rand_seed[1], 6);
|
||||
afl->rand_seed[2] = zp - yp;
|
||||
afl->rand_seed[2] = ROTL(afl->rand_seed[2], 22);
|
||||
return xp;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#undef ROTL
|
||||
|
||||
/* returns a double between 0.000000000 and 1.000000000 */
|
||||
|
||||
inline double rand_next_percent(afl_state_t *afl) {
|
||||
@ -75,80 +79,6 @@ inline double rand_next_percent(afl_state_t *afl) {
|
||||
|
||||
}
|
||||
|
||||
/* This is the jump function for the generator. It is equivalent
|
||||
to 2^128 calls to rand_next(); it can be used to generate 2^128
|
||||
non-overlapping subsequences for parallel computations. */
|
||||
|
||||
void jump(afl_state_t *afl) {
|
||||
|
||||
static const uint64_t JUMP[] = {0x180ec6d33cfd0aba, 0xd5a61266f0c9392c,
|
||||
0xa9582618e03fc9aa, 0x39abdc4529b1661c};
|
||||
size_t i, b;
|
||||
uint64_t s0 = 0;
|
||||
uint64_t s1 = 0;
|
||||
uint64_t s2 = 0;
|
||||
uint64_t s3 = 0;
|
||||
for (i = 0; i < (sizeof(JUMP) / sizeof(*JUMP)); i++)
|
||||
for (b = 0; b < 64; b++) {
|
||||
|
||||
if (JUMP[i] & UINT64_C(1) << b) {
|
||||
|
||||
s0 ^= afl->rand_seed[0];
|
||||
s1 ^= afl->rand_seed[1];
|
||||
s2 ^= afl->rand_seed[2];
|
||||
s3 ^= afl->rand_seed[3];
|
||||
|
||||
}
|
||||
|
||||
rand_next(afl);
|
||||
|
||||
}
|
||||
|
||||
afl->rand_seed[0] = s0;
|
||||
afl->rand_seed[1] = s1;
|
||||
afl->rand_seed[2] = s2;
|
||||
afl->rand_seed[3] = s3;
|
||||
|
||||
}
|
||||
|
||||
/* This is the long-jump function for the generator. It is equivalent to
|
||||
2^192 calls to rand_next(); it can be used to generate 2^64 starting points,
|
||||
from each of which jump() will generate 2^64 non-overlapping
|
||||
subsequences for parallel distributed computations. */
|
||||
|
||||
void long_jump(afl_state_t *afl) {
|
||||
|
||||
static const uint64_t LONG_JUMP[] = {0x76e15d3efefdcbbf, 0xc5004e441c522fb3,
|
||||
0x77710069854ee241, 0x39109bb02acbe635};
|
||||
|
||||
size_t i, b;
|
||||
uint64_t s0 = 0;
|
||||
uint64_t s1 = 0;
|
||||
uint64_t s2 = 0;
|
||||
uint64_t s3 = 0;
|
||||
for (i = 0; i < (sizeof(LONG_JUMP) / sizeof(*LONG_JUMP)); i++)
|
||||
for (b = 0; b < 64; b++) {
|
||||
|
||||
if (LONG_JUMP[i] & UINT64_C(1) << b) {
|
||||
|
||||
s0 ^= afl->rand_seed[0];
|
||||
s1 ^= afl->rand_seed[1];
|
||||
s2 ^= afl->rand_seed[2];
|
||||
s3 ^= afl->rand_seed[3];
|
||||
|
||||
}
|
||||
|
||||
rand_next(afl);
|
||||
|
||||
}
|
||||
|
||||
afl->rand_seed[0] = s0;
|
||||
afl->rand_seed[1] = s1;
|
||||
afl->rand_seed[2] = s2;
|
||||
afl->rand_seed[3] = s3;
|
||||
|
||||
}
|
||||
|
||||
/* we switch from afl's murmur implementation to xxh3 as it is 30% faster -
|
||||
and get 64 bit hashes instead of just 32 bit. Less collisions! :-) */
|
||||
|
||||
|
Reference in New Issue
Block a user